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Preface

Please note that this set of notes is NOT meant to be a substitute for any course material, and is instead
complementary to it at best. The following review is mostly a transcription of some handwritten notes I kept
as an undergraduate when I took my first and second statistical mechanics courses. It is hard for me to place
exact citations throughout this, as I do not include those in my own notes. As far as possible, I have tried
to compile a list of the references [1–9] which I used when writing these and taking my statistical mechanics
course in the past. This document may be updated periodically, and the latest version will be put on Canvas
as well as my personal webpage.

In my personal opinion, the history and study of thermodynamics is incredibly beautiful and profound.
All energy is created equal, yet the idea that some energy (heat) is less equal than others (work) is rather
baffling. We take this simple fact for granted in our everyday lives, and the formal study of thermodynamics
ought to open your eyes to this. In this course, you would have seen the idea of entropy from a statistical
mechanics perspective and how it links to the microscopic constituents of a system. Thermodynamics is a
field conceived far before we were even aware of the existence of the microscopic world, and so it approaches
heat from a radically different angle. In studying thermal physics as a whole, one should be aware of these
two narratives and how they ultimately tell the same story under a different set of assumptions. The ideas
developed here tell us how energy and entropy ultimately determine the fate of systems and processes, and
one can apply these notions to understand far more complex fields such as biological physics, cosmology,
information theory and even sociology.

As mentioned in the previous review, my first (and second and third) statistical mechanics course(s)
brought me plenty of joy, in that it/they really did change the way I viewed the world around me. My aim
with this review is to (hopefully) pass some of that excitement on to you.
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0 Prelude

Before we begin, allow me to set the stage with some preliminary knowledge that I believe you should have
going into this. Feel free to skip this section if you feel confident with this content.

0.1 Classes of Thermodynamic Systems

A thermodynamic system is an arbitrary amount of matter confined by walls of some sort against its surround-
ings. Isolated systems are those which have walls that prevent any form of interaction with their surroundings,
be it in the form of heat exchange, volume exchange, particle exchange or information exchange. Thus, energy
is conserved over time in an isolated system. In reality, the closest thing to an isolated system is the entire
Universe as a whole (as far as we know). While one may think a perfect vacuum devoid of particles is a great
example of an isolated system, even a vacuum can induce spontaneous fluctuations in the underlying quantum
fields of the Universe, giving rise to pair production and annihilation, and is also always filled with blackbody
radiation at any nonzero temperature. Thus, the perfect isolated system is merely just an idealisation and
should not be taken too seriously beyond theoretical work.

Closed systems, on the other hand, are allowed to only exchange energy with their surroundings through
heat, so they do not obey conservation of energy. If a closed system is in equilibrium1 with its surroundings,
the mean value of its internal energy will be related to its temperature, or the temperature of the surroundings
(which typically sets that of the system).

Finally, open systems can exchange both energy and matter with their surroundings, so both the energy
and particle number are not conserved2. If an open system is in equilibrium with its surroundings, the mean
values of the internal energy and particle number will be related to the temperature and chemical potential of
the surroundings respectively.

In order to proceed with thermodynamics proper, we need a working definition of thermodynamic equi-
librium (we will build on this later). The thermodynamic equilibrium state is defined to be the one macro-
scopic state of the system that is automatically attained after a sufficiently long period of time such that the
macroscopic properties of the system no longer change over time. For this to occur, we need to specifically
break down thermodynamic equilibrium into three distinct requirements:

Definition 0.1: Constituents of Thermodynamic Equilibrium

1. Thermal equilibrium is achieved when the temperature differential between the system and its
surroundings is zero and unchanging over time.

2. Mechanical equilibrium is achieved when there are no unbalanced forces acting on any part of
the system or on the system as a whole.

3. Diffusive equilibrium is achieved when there are no chemical reactions within the system and
there is no net motion of particles from one part of the system to another.

1We will formalise the definition of equilibrium later on.
2In reality, every system that we can study in the lab is an open system. While one may say that state-of-the-art ultrahigh vacuum

chambers are able to prevent the exchange of particles between the interior and exterior of the chamber, even the highest grades of
stainless steel inevitably allow for hydrogen to slowly diffuse through the metal into the chamber. This takes place on the time scale of
several years, so you have a great approximation to a closed system for awhile before you have to worry about particle exchange.
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0.2 State Variables

State variables, or state functions, are macroscopic quantities which characterise a system. They are only well
defined when the system is in equilibrium, and are only dependent on the current thermodynamic state of
the system (with no reference to its past history). The equation of state for a system gives a mathematical
relationship between state variables3. State variables are typically classified by their degree of homogeneity,
where we define a homogeneous function as:

Definition 0.2: Homogenous Function

A function f = f({xi}) is said to be a homogeneous function of degree k if it satisfies:

f({λxi}) = λkf({xi}), λ ∈ R (0.1)

Homogeneous functions of degree 1 are called extensive functions, while those of degree 0 are called
intensive functions.

In the context of thermodynamics, we note that extensive state variables are proportional to the amount
of matter in a system, while intensive state variables are independent of the amount of matter. Finally, we
also note that all state variables in thermodynamics must produce exact differentials, since the presence of an
inexact differential would imply that the variable depends on the path taken in some state space.

0.3 The Zeroth Law of Thermodynamics

The zeroth law of thermodynamics, just by virtue of its name, sounds like a hilarious afterthought (and it
probably is, granted its importance). It reads as follows:

Definition 0.3: Zeroth Law of Thermodynamics

If two systems are separately in thermal contact and equilibrium with a third system, then they must
also be in thermal equilibrium with one another.

This implies the existence of a state variable which encodes the propensity for two systems in thermal
contact to exchange energy with one another — the temperature T . That is, two systems with different initial
temperatures will spontaneously exchange energy with one another once brought into thermal contact, until
thermal equilibrium is achieved. As history would have it, there are various temperature scales in use around
the world such as the Kelvin scale, the Celsius scale, the Fahrenheit scale (and my personal favourite, the
Newton scale4). We will exclusively work in terms of degrees Kelvin, which has a fixed calibration point defined
by the triple point of water (we will formalise the definition of the triple point later) at 273.16K. The Kelvin
scale for an ideal gas is then defined as:

T =
limP→0(PV )system

limP→0(PV )ice−water−steam
× 273.16K (0.2)

3Equations of state are typically given empirically in thermodynamics, while statistical mechanics provides us with a bottom-up ap-
proach for constructing these equations of state from the microscopic constituents of a system and their governing equations of motion.

4In the Newton scale, 0 is defined as “the heat of air in winter at which water begins to freeze”, while 6 is defined as “the heat at midday about
the month of July”.
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1 The First Law of Thermodynamics

Now that that’s out of the way, let’s begin.

1.1 Internal Energy

We recall from classical mechanics that the energy of a system can be broken into:

Etotal = Emacroscopic + Emicroscopic (1.1)

The macroscopic energy comprises the kinetic energy of the centre of mass and the potential energy of the
system due to external fields only. In contrast, the microscopic energy comprises all forms of energy resulting
from the motion of the microscopic constituents of a body or system. As an example, the prototype problems
in elementary mechanics typically make reference to a solid block undergoing some sort of motion due to
external forces. The macroscopic energy of this block would simply be the sum of the kinetic and potential
energies of the block’s centre of mass, while the microscopic energy would be that due to the vibrations and
interatomic repulsion of the individual atoms making up the block. While in classical mechanics, we disregard
the microscopic degrees of freedom to study macroscopic bodies, we will do the opposite in thermodynamics
and instead disregard the macroscopic degrees of freedom such as motion and interactions of the centre of
mass. Thus, it is automatically assumed that the energy being referenced in thermodynamics and statistical
mechanics is purely microscopic in origin, so we identify E = Emicroscopic.

The internal energy of a system is the sum of the energy of all internal degrees of freedom of the system.
We can break this up into the kinetic energy Ekin and the potential energy Epot. The kinetic energy accounts for
all microscopic constituents’ kinetic energies in a frame where the centre of mass is at rest, while the potential
energy accounts for the interactions between all constituent particles in the system. Now, we also note that
the internal energy E is an extensive state function and depends only on the equilibrium state of the system
described by some set of functions {Xi} = X (represented by a coordinate vector in state space). We then
have E = E(X), where X is a full characterisation of the system in the relevant state space, independent of the
system’s history or previous path through the state space.

1.2 The First Law

In order to proceed, we need to first recognise that microscopic energy primarily comes in two forms. Specif-
ically, if energy flows between a system and its surroundings due to a temperature differential across a wall,
we consider this to be heat Q. All other forms of energy transfer are then considered to be work W . We will
later see that heat is solely responsible for changing the amount of disorder in a system, while work has no
effect on the disorder.

In an ideal gas, the natural state space to consider is that of the pressure p, volume V and temperature
T . For now, we will simply consider the two-dimensional subspace parametrised by (p, V ). Each point in a
pV -diagram is described by the two coordinates p and V , since they are state variables. However, both the heat
and work are not state variables, and depend on the nature of the underlying process and the path that they
take through this state space. This motivates the first law of thermodynamics, which relates the path variables
of heat and work, to the state variable of internal energy.
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Definition 1.1: First Law of Thermodynamics

The first law of thermodynamics states that energy is conserved, and is transferred between systems as
either heat or work. The increase in internal energy of a system is thus equal to the sum of heat flowing
into it and the work done on it. Mathematically, we have:

δE = E(Xf )− E(Xi) = δQ+ δW (1.2)

where δ represents a finite change in a quantity. In differential (infinitesimal) form, we equivalently
write:

dE = d̄Q+ d̄W (1.3)

where the use of d̄ implies that the differential is for a path variable (rather than a state variable), and is
thus not exact. We will also use the sign convention that Q and W (and their changes δ or differentials
d̄) are positive for heat flowing into a system or work being done on the system.

The fact that dE is an exact differential implies that the inexact differentials of heat and work must be
expressible in terms of suitable state variables, specifically of the form:

dE =
∑
i

(
∂E

∂Xi

)
{Xj}j ̸=i

dXi (1.4)

where the subscript on a partial derivative lists the variables to be kept constant in taking the derivative.

1.3 Quasistatic and Reversible Processes

Definition 1.2: Quasistatic and Reversible Processes

A process is said to be reversible if it is possible to restore the system and its surroundings to their
original conditions (note the emphasis on the surroundings as well). A process is called quasistatic if it
is sufficiently slow such that any intermediate state along the path of the process can be considered to
be an equilibrium state. If a process occurs too quickly, the system has no time to internally equilibrate,
and so the state variables are no longer well-defined along the path, which automatically renders the
process irreversible. The distinction to make here is that while all reversible processes must be quasi-
static, not all quasi-static processes are reversible since there is no requirement for a quasi-static process
to ensure equilibrium between the system and its surroundings.

If the system is in equilibrium with its surroundings at each point along a process’ path, we can construct
a continuous function to parametrise the path in terms of state variables, as shown in Fig. 1. Examples of these
include isobaric, isochoric, isothermal and adiabatic processes. Specifically for the work, we can consider its
dependence on the various state variables {Xi} and partition this into the set of generalised displacements
{xi} and their conjugate generalised forces {Fi}. The work differential is then written as:

d̄W =
∑
i

Fi dxi (1.5)

Common examples of force-displacement pairs are the pair of pressure-volume (−p dV ), magnetic field-
magnetisation (B · dM) and chemical potential-particle number (µdN). Throughout this review, I will typi-
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FIGURE 1: Reversible Process. If a process is carried out sufficiently slowly, then its path through state space can be
parametrised (through some real-valued parameter λ) in terms of equilibrium values of the state variables at every point
along the process.

cally use d̄W = −p dV + µdN , with the second term being dropped if it is obvious that the particle number is
conserved for the example in question.

1.4 Response Functions

To characterise the macroscopic behaviour of a system, we have to experimentally measure the response of
the system to some external perturbation in terms of its thermodynamic state variables. The typical quantity
to be measured is known as a thermodynamic response function, and it comes in various forms depending
on the perturbation being applied and measurement being taken. We first have to emphasise that the ratio of
two extensive quantities is intensive, while the ratio of an extensive to an intensive quantity is extensive. The
proofs of these are simple, using the basic equation from Def. 0.2 (so they are left for you to try on your own).

With this in mind, we now consider the most familiar response function — the heat capacity Cy of a
system held at constant y, where y is some thermodynamic state variable. This is formally defined as:

Cy =

(
d̄Q
∂T

)
y

(1.6)

It should be clear that the heat capacity Cy is an extensive quantity, while the specific heat cy = Cy/N

is an intensive quantity. Apart from thermal responses, we can also probe mechanical responses such as the
compressibility κ, which measures the fractional change in volume of a substance in response to an applied
force:

κy =
1

V

(
∂V

∂p

)
y

(1.7)

There are also hybrid thermo-mechanical responses such as the thermal expansivity β, which measures
the fractional change in volume in response to a change in temperature:

βy =
1

V

(
∂V

∂T

)
y

(1.8)

In a typical experimental situation, measuring several response functions over a range of parameters
allows the experimenter to reconstruct equations of state, which fully characterises the system under study.
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1.5 Heat Capacities

Despite our earlier definition of the heat capacity involving a state variable being kept constant, we can (in
theory) define the heat capacity for any path as long as the path is differentiable and parametrisable in the
relevant state space. We now use this idea to derive the two most commonly used heat capacities CV and Cp.

Heat Capacity at Constant Volume From the first law, we have:

d̄Q = dE + p dV

Then, we easily obtain CV by taking the partial derivative with respect to T , while setting dV = 0:

CV =

(
d̄Q
∂T

)
V

=

(
∂E

∂T

)
V

Heat Capacity at Constant Pressure From the first law, we obtain Cp by taking the partial derivative with
respect to T at constant pressure:

Cp =

(
d̄Q
∂T

)
p

=

(
∂E

∂T

)
p

+ p

(
∂V

∂T

)
p

Difference in Heat Capacities We will later see that the difference Cp − CV is a measurable quantity, and
is thus of interest to an experimentalist. While that requires some work after we introduce the second law,
we can at least try to obtain a simpler expression for this, also using this as a lesson in partial derivative
gymnastics. Suppose we have a system with an equation of state in the form f(p, V, T ) = 0 (e.g. ideal gas,
van der Waals gas, etc.). The equation of state sets a constraint on the three variables, indicating that one can
always be determined by the values of the other two. We can use this to eliminate the (∂E/∂T )p term in Cp.
We first notice that this derivative is canonically obtained from expressing the internal energy E in terms of
the pressure and temperature as E(p, T ), which gives the total differential:

dE =

(
∂E

∂p

)
T

dp+

(
∂E

∂T

)
p

dT (1.9)

It should be noted at this point that it is not possible to write E as a function of E(p, V, T ) since the
equation of state guarantees that one of these variables is not independent. We are, however, free to choose
which variable is dependent at this stage. With this in mind, we now consider the total differential of E when
it is written instead as E(V, T ):

dE =

(
∂E

∂V

)
T

dV +

(
∂E

∂T

)
V

dT

If we are able to convert the dV term here into something that instead contains dp (which is guaranteed
to be possible since there is an equation of state linking them), we will obtain an expression for ∂E/∂T p in
terms of ∂E/∂T V , successfully eliminating the term we wanted to get rid of. For this, we simply use the total
differential of V (p, T ) (which exists because of the equation of state):

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

Plugging this into the above equation, we proceed as:
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dE =

(
∂E

∂V

)
T

[(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

]
+

(
∂E

∂T

)
V

dT

=

(
∂E

∂p

)
T

dp+

[(
∂E

∂V

)
T

(
∂V

∂T

)
p

+

(
∂E

∂T

)
V

]
dT

where we use the chain rule in the first term to ‘cancel’ the two appearances5 of ∂V . Now, comparing this
to the total differential in Eq. 1.9, we easily identify:(

∂E

∂T

)
p

=

(
∂E

∂V

)
T

(
∂V

∂T

)
p

+

(
∂E

∂T

)
V

(1.10)

With this result, we can finally insert it into our previous expression for Cp and obtain the heat capacity
difference as:

Cp − CV =

[
p+

(
∂E

∂V

)
T

](
∂V

∂T

)
p

(1.11)

As an example, we can compute this for the ideal gas as:

Cp − CV =

(
NkBT

V

)
V

T
= NkB (1.12)

where we note that the derivative (∂E/∂V )T vanishes since the internal energy of the ideal gas is strictly
a function of its temperature and not the volume. This result is sometimes also known as Mayer’s relation.

1.6 Adiabatic Processes

Definition 1.3: Adiabatic Process

An adiabatic process is defined as one that occurs without any exchange of heat between the system
and its surroundings. Mathematically, this is written as:

d̄Q = 0 =⇒ ∆E = d̄W (1.13)

which implies that any change in the internal energy is due to the work alone. This typically occurs
when a process is so rapid that it is completed on a much shorter time scale than is required for thermal
equilibration to occur between the system and its surroundings.

We can evaluate the defining relation for an adiabatic process6 in the case of an ideal gas, producing
curves known as adiabats. Since the ideal gas equation of state is of the form f(p, V, T ) = 0, we expect that the
imposition of the adiabatic constraint results in a single-parameter trajectory in this state space (i.e. adiabats
are just a family of curves). We start from the fundamental relation as usual:

dE = d̄Q− pdV =⇒ dE + pdV = 0

5Mathematicians would burn me at the stake for saying this, but you know exactly what I mean when I say this.
6You may notice that this is in complete contradiction with the idea of an adiabatic process in the context of classical and quantum me-

chanics (look up adiabatic invariants or geometric phase), where an adiabatic classical/quantum process which modifies the Hamiltonian
takes place slowly enough such that the system beginning in the ground state always remains in the ground eigenstate. This is due to the
unfortunate coincidence that old quantum theory used the term adiabatic to describe this process, even though it has nothing to do with
the thermodynamic definition of adiabatic.
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where we have set d̄Q = 0 for the adiabat. Now, we know that the internal energy of an ideal gas is a
function of its temperature alone, and so we can write:

E = E(T ) =⇒ CV =

(
∂E

∂T

)
V

=
dE

dT

which can be used to substitute the differential of the internal energy. We then proceed to try and integrate
for the adiabat:

0 = CV dT +
NkBT

V
dV

dT

T
= −NkB

CV

dV

V

T = V −NkB/CV + c, c ∈ R

c = TV Cp/CV −1

=⇒ c = PV γ (1.14)

In the third line, the constant c is simply a real constant of integration which differs on all subsequent lines
by factors. In the fourth line, we use Mayer’s relation from Eq. 1.12 to introduce the constant pressure heat
capacity. Finally, we define γ = Cp/CV as the heat capacity ratio in the last line, which gives us the defining
equation for an adiabat.

2 The Second Law of Thermodynamics

From the first law, we have a picture of thermodynamics that is consistent with the conservation of energy.
We have not, however, refined this picture into one that is independent of a system’s history. Specifically, our
working definition of heat involves the path variable Q and so it is difficult to describe the equilibrium state
functions of a system at any point in time as it navigates the state space. For this, we will need to motivate and
develop a state variable descriptor of heat, which will ultimately lead us to the second law of thermodynamics.
It should be noted here that thermodynamics does not actually provide a derivation for the second law, and
it is merely a self-consistent framework that fits into the rest of thermodynamics. The only way to derive the
second law is to use statistical mechanics, but I will not do so here since there are many subtleties involved that
present countless points of confusion and argument. Instead, we will study the dynamics of heat and motivate
the construction of a state variable from there.

2.1 Heat Engines and Refrigerators

Early studies of thermodynamics involved developing a description for the flow of heat, and eventually led to
principles governing the driven flow of heat in devices that have now become indispensable for everyday life,
such as heat engines and refrigerators (or heat pumps). At an abstract level, a heat engine is a cyclic process
E in a system that absorbs heat |Qin|, rejects heat |Qout|, and performs a positive amount of work |W |. Here,
we define Q and W to be positive for an inflow of energy into the system. Now, we apply the first law to this
engine to obtain:

Q = |Qin| − |Qout| = −W

We can also define the efficiency η of the heat engine as:
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FIGURE 2: Heat Engines and Refrigerators. (Left) A heat engine E is any cyclic process in a system that accepts heat |QH |
from a hot reservoir at temperature TH and outputs some useful work |W |, rejecting waste heat |QC | to a cold reservoir at
TC in the process. (Right) A refrigerator R (or heat pump) is any cyclic process in a system that removes heat |QC | from a
cold reservoir at temperature TC and deposits heat |QH | into a hot reservoir at TH , requiring some input work |W | in the
process.

η =
work out

heat in
= 1− |Qout|

|Qin|
(2.1)

which also constrains the efficiency to lie in the range η ∈ [0, 1] by the conservation of energy. In general,
two-temperature devices such as the heat engine are cyclic devices working between two heat reservoirs. In
the context of thermodynamics, we consider a reservoir to simply be an external system that contains such a
large amount of matter and energy that the addition or removal of heat/work by our cyclic process does not
change its temperature. Heat engines thus specifically accept heat |QH | from a hot reservoir at temperature
TH , perform some useful work |W | and reject waste heat |QC | at temperature TC , with the imposition that
TH > TC . With these formalities in place, we can also define the heat pump, or refrigerator to be a cyclic
process which accepts heat |QC | from a cold reservoir at TC and accepts work |W |, then deposits heat |QH |
into a hot reservoir at temperature TH . These devices are shown pictorially in Fig. 2. The efficiency of a
refrigerator is then defined as7:

η =
heat in
work in

= 1− |QC |
|W |

(2.2)

2.2 The Second Law

Please indulge me for a moment, for I would be remiss if I did not share perhaps my favourite description of
the second law, written by Elliott H. Lieb and Jakob Yngvason [6].

“The second law of thermodynamics is, without a doubt, one of the most perfect laws in physics.
Any reproducible violation of it, however small, would bring the discoverer great riches as well as a
trip to Stockholm. The world’s energy problems would be solved at one stroke. It is not possible
to find any other law (except, perhaps, for super selection rules such as charge conservation) for

7The efficiency of a heat pump is defined slightly differently to that of a refrigerator despite performing the same physical job. This
is because the heat pump’s purpose is to supply the hot reservoir with heat, while the refrigerator’s job is to remove heat from the cold
reservoir. The efficiency of a heat pump is defined as: η = heat out/work in = |QH |/|W |.
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FIGURE 3: Impossible Devices from the Clausius and Kelvin–Planck Statements. (Left) A Clausius violator is an impos-
sible device which violates the Clausius statement of the second law, by removing heat from a cold reservoir and depositing
it entirely as heat in a hot reservoir without any input work. (Right) A Kelvin violator is an impossible device which vio-
lates the Kelvin–Planck statement of the second law, by accepting heat |QH | and converting it entirely to work with unit
efficiency, generating no waste heat in the process.

which a proposed violation would bring more scepticism than this one. Not even Maxwell’s laws
of electricity or Newton’s law of gravitation are so sacrosanct, for each has measurable corrections
coming from quantum effects or general relativity. The law has caught the attention of poets and
philosophers and has been called the greatest scientific achievement of the nineteenth century. En-
gels disliked it, for it supported opposition to dialectical materialism, while Pope Pius XII regarded
it as proving the existence of a higher being (Bazarow, 1964, Section 20).” — Lieb & Yngvason
(1999) [6].

Historically, the first studies of heat transfer and efficiency of cyclic processes were conducted by Sadi
Carnot and published in his book — Reflections on the Motive Power of Fire [3]. Tragically, like many other
young adults in France during the 1800s, he succumbed to cholera at the young age of 36, and many of his
writings were buried along with him due to fear of the contagious nature of the disease. As a result, it is be-
lieved that progress in fundamental thermodynamics was delayed by at least a decade before Rudolf Clausius
finally formulated his statement of the second law in 1850. Towards the end of the 19th century, Lord Kelvin8

provided a similar formulation together with Max Planck, now known as the Kelvin–Planck statement of the
second law. Immediately after this work, Planck turned his attention to the problem of blackbody radiation,
and developed his now renowned Planck distribution of blackbody radiation which solved the ultraviolet
catastrophe. For this reason, Carnot, Clausius, Kelvin and Planck are frequently dubbed as the early fathers
of thermodynamics9. In this section, we will study the Clausius and Kelvin-Planck statements, and show that
they are equivalent.

8His full name was William Thomson, 1st Baron Kelvin.
9Of course, this list of names is not complete. If I were to elaborate on the complete history of thermodynamics, this review would be

a full-length novel (and Netflix series) that I am not currently being paid enough to write.

11



FIGURE 4: Constructions of Clausius and Kelvin Violators for Equivalence. (Left) The composite device (K̄ ◦ R) ≡ F
formed by combining a Kelvin violator and a refrigerator can be shown to be equivalent to a Clausius violator, by sponta-
neously driving heat from a cold reservoir to a hot reservoir with no work input. (Right) The composite device (C̄ ◦ E) ≡ G
formed by combining a Clausius violator with a heat engine can be shown to be equivalent to a Kelvin violator, by converting
heat from a hot reservoir into useful work with perfect efficiency, generating no waste heat.

Definition 2.1: Clausius and Kelvin–Planck Statements

The Clausius Statement PC : There is no process C̄ whose only effect is to accept heat from a cold
reservoir at TC and transfer it to a hot reservoir at TH , with no work input. Equivalently, heat cannot
be (spontaneously) transferred from a cold reservoir to a hot reservoir without work.
The Kelvin Statement PK : There is no process K̄whose only effect is to accept heat from a single heat
reservoir and convert it entirely into work. Equivalently, a heat engine must always reject some waste
heat.
These impossible processes/devices are shown pictorially in Fig. 3.

To prove the equivalence of these two statements10 (PC ⇔ PK), we need to show both PC ⇒ PK and
PK ⇒ PC . For this, we will show each premise using proofs by contraposition.

Theorem 2.1. The Clausius statement PC and Kelvin–Planck statement PK are equivalent.

Proof. We will first show the contrapositive ¬PK =⇒ ¬PC . Suppose we have a Kelvin violator K̄ which accepts
|Q′

H | from a hot reservoir at TH and converts it entirely into work |W |. We place this alongside a refrigerator
R operating between a cold reservoir at TC and the same hot reservoir, such that it accepts heat |QC | from
the cold reservoir, takes in work |W | from K̄ and deposits heat |QH | into the hot reservoir, as shown in Fig. 4.
The composite device (K̄ ◦ R) ≡ F now has the net effect of removing heat |QC | from the cold reservoir
and depositing heat |QH | − |Q′

H | at the hot reservoir, with no work input! Thus, the composite system F is
equivalent to C̄, a Clausius violator!

Next, we show the contrapositive ¬PC =⇒ ¬PK . Suppose we have a Clausius violator C̄ which removes
heat |QC | from a cold reservoir and deposits it entirely as heat |QH | = |QC | into the hot reservoir. Then, we
consider a heat engine E that accepts heat |Q′

H | from the hot reservoir and rejects heat |QC | at the cold reservoir,

10It is hard to prove the absolute truth of these statements in a purely thermodynamic fashion, as the typically used proofs in under-
graduate courses now simply resort to statistical mechanics arguments. When these statements were introduced, it was simply widely
accepted that the Clausius statement was true by intuition that heat does not spontaneously leave a colder body and flow into a hotter
body. During the era of these developments, showing the truth of a statement of the second law generally involved one showing that their
conjecture was somehow equivalent to the Clausius statement.
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FIGURE 5: The Carnot Cycle. A Carnot engine undergoing a Carnot cycle involves a sequence of reversible processes
which maximise the efficiency of an engine operating between two reservoirs. Heat is transferred into the engine through
isothermal expansion at the hot reservoir, before the system is adiabatically cooled to the cold reservoir. Heat is then
rejected at the cold reservoir through isothermal compression, before it is finally adiabatically heated back to the hot
reservoir. The total work done in this process is easily obtained by integrating to find the area of the region enclosed by the
process in the p-V state space.

performing work |W | in the process, as shown in Fig. 4. The composite device (C̄ ◦E) ≡ G now has the net effect
of absorbing heat |Q′

H |− |QH | from the hot reservoir and performing work |W |, with no waste heat generated!
Thus, the composite system G is equivalent to K̄, a Kelvin violator!

Combining the two contrapositive statements, we conclude that the Clausius and Kelvin–Planck state-
ments are indeed equivalent.

2.3 Carnot’s Theorem

Now that we have working statements of the second law in place, we will take a step back to visit Carnot’s
initial work that was fundamental in motivating Clausius’ and Kelvin’s statements and later formulations of
the second law. To understand Carnot’s brilliance, we must first dissect his definition of a perfect heat engine.
A Carnot engine is an idealised system which is cyclic and reversible, with all heat exchanges taking place
only at either a hot reservoir TH or a cold reservoir TC .

Definition 2.2: Carnot Cycle

For two temperatures TC < TH , the Carnot cycle is defined as a sequence of four processes (shown in
Fig. 5), starting from the hot reservoir at TH :

1. A −→ B: Isothermal expansion at TH

2. B −→ C: Adiabatic cooling from TH to TC

3. C −→ D: Isothermal compression at TC

4. D −→ A: Adibatic heating from TC to TH

We note that the heat transfer along adiabatic paths is zero ∆Q = 0, and thus heat is only exchanged in
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this process along the isotherms at the two reservoirs. The efficiency of a Carnot engine, also known as the
Carnot efficiency, is thus obtained as:

ηCE = 1− |QC |
|QH |

= 1− TC

TH
(2.3)

The second equality here is a more general result from Carnot, which we will shortly explore. For now,
we will demonstrate the truth of the second equality for a Carnot engine operating using an ideal gas as its
medium. We first use the fact that the internal energy of an ideal gas solely depends on its temperature, so
the internal energy is constant during an isothermal process. Thus, we can integrate the equation of state to
determine the heat transfer taking place during an isothermal process from initial volume Vi to final volume
Vf :

0 = d̄Q+ d̄W

d̄Q = −NkBT
dV

V

=⇒ Qin = NkBT log

(
Vf

Vi

)
where the sign is flipped because the right hand side of the last equation details the work done by the

system (as opposed to the work done on the system). Using this, we now identify the input and output heats
of a Carnot engine as:

|Qin| = QA→B = NkBTH log

(
VB

VA

)
, |Qout| = −QC→D = −NkBTC log

(
VD

VC

)
The efficiency is now written as:

ηCE = 1− |Qout

|Qin|
= 1− TC

TH
log

(
VBVD

VAVC

)
To eliminate the appearances of the volumes, we return to the adiabat equation from Eq. 1.14 to write:

PV γ = const. =⇒ TV γ−1 = const.

Plugging in the values for the two adiabat curves in the Carnot cycle, we arrive at:TBV
γ−1
B = TCV

γ−1
C

TDV γ−1
D = TAV

γ−1
A

=⇒ VC

VB
=

VD

VA

Finally, substituting this into the efficiency produces the second equality as required, demonstrating that
the efficiency of the Carnot engine operating using an ideal gas depends only on the temperature ratio between
the two reservoirs. Carnot was able to prove this relation for all working media, but we will not do so here as
it is rather involved. We now proceed to state and prove Carnot’s theorem, which reads as follows:

Theorem 2.2. No engine operating between two reservoirs can be more efficient than a Carnot engine operating between
the same two reservoirs, regardless of the working medium11.

11It should be noted here that the theorem is not necessarily satisfied if the engine operates between more than two reservoirs instead.
That is, if heat exchange occurs in multiple stages between different reservoirs, one can exceed the Carnot efficiency dictated by the
temperatures of the two reservoirs at the temperature extrema.
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FIGURE 6: Proof of Carnot’s Theorem by Contradiction. To prove Carnot’s theorem, we consider a Carnot engine
running in reverse to effectively act as a Carnot refrigerator CR. The required work for its operation is then provided by
a hypothetical super-efficiency engine Ē which accepts less heat from the hot reservoir than CR deposits. Applying the
first law then easily shows that the composite device formed by (Ē ◦ CR) is equivalent to a Clausius violator, forcing a
contradiction.

Proof. Suppose we have a Carnot engine operating between two reservoirs at TC < TH , accepting heat |QH |
from the hot reservoir and rejecting heat |QC | at the cold reservoir, providing |W | useful work in the process.
We now reverse the engine to obtain a Carnot refrigerator with the same heats at the two reservoirs, keeping
the definition of the efficiency as that of a heat engine for now. That is, we define the efficiency as ηCR =

workin/heatout. Now, for sake of contradiction, assume we have an impossible super-efficient engine Ē which
operators between the same two reservoirs, which accepts heat |Q′

H | from the hot reservoir and rejects heat
|Q′

C | at the cold reservoir. This also provides the required work |W | for the Carnot refrigerator in the process,
but with an efficiency ηSE > ηCR. It should be clear that since Ē is able to provide the required work |W | at
higher efficiency than CR, the input heat |Q′

H | to Ē must be less than the deposited heat |QH | by CR (this is
clear if one looks at the definition of the efficiency). These devices are shown in Fig. 6. Now, since each device
is cyclic in operation, we can apply the first law to each of them individually knowing that ∆E = 0 to write:

|W | = |Q′
H | − |Q′

C | = |QH | − |QC | =⇒ |QH | − |Q′
H | = |QC | − |Q′

C | > 0

This tells us that, at the hot reservoir there is a net inflow of energy, while at the cold reservoir there is a
net outflow of energy. With this, it becomes clear that the composite device (Ē ◦ CR) is equivalent to a Clausius
violator! Thus, by contradiction, we conclude that such a super-efficient engine Ē cannot exist, and thus the
maximal efficiency for any engine operating between two reservoirs is given by the Carnot efficiency.

Using the above conclusion, it is also trivial to prove that all Carnot engines operating between the same
two reservoirs must have exactly the same efficiency12.

12This is a simple proof by relabelling.
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2.4 Clausius’ Inequality

Carnot’s observations of the theoretical maximum efficiency of heat engines went largely unlinked to the sec-
ond law of thermodynamics for some time after his death, until Rudolf Clausius observed that one could
develop a path-independent quantity through Carnot’s theoretical construction. The actual formulation of the
concept of entropy began with Clausius’ studies of bounds that one could place on the nature of thermody-
namic processes altogether. This ultimately manifested in what is now known as Clausius’ inequality, which
is a remarkably powerful statement on the extent of heat exchange allowed to occur within cyclic processes.
The derivation of this inequality is rather involved, so I will try to provide as much elaboration and visualisa-
tion as possible.

FIGURE 7: Arbitrary Process in State Space
as a Sequence of Infinitesimal Heat Exchanges.
Since we are considering a cyclic process in state
space, this must be a curve parametrised by a sin-
gle parameter. Thus, we can consider the path
as a function of this parameter broken into in-
finitesimal pieces, moving from one value Tk to
the next Tk+1. In the p−V state space, this is visu-
alised as the curve intersecting various isotherms
over the course of the cyclic process. If the curve
moves from a lower isotherm to a higher one,
corresponding to increasing temperature, we de-
duce that heat must have entered the system at
that step (and vice versa). In the diagram, this
corresponds to Qi being a heat input, while Qj

is a heat output. The total area enclosed by the
cyclic process is the work done on the system.

Suppose we have an engine E which undergoes some
reversible and cyclic process as shown in Fig. 7. We can de-
fine a temperature (state variable) at each point in the cycle,
then consider the heat exchange necessary for E to success-
fully transit from each point Tk to the next point Tk+1 along
its path13. We can represent each of these heat exchanges
as E receiving heat from or donating heat to a Carnot cycle
Ci at each temperature Ti, as it performs the i-th tempera-
ture transit. Each Carnot cycle may either be an engine or
refrigerator, depending on the direction of the temperature
change required by the cycle undertaken by E . Now, each
Carnot cycle thus exchanges heat |Q′

i| with some reservoir
T0, performs or receives work |Wi| then exchanges heat |Qi|
with E at Ti, bringing E to Ti+1. As E exchanges heat with
each Carnot cycle and undergoes a full cycle, it either re-
ceives or performs total work |W0|.

With our setup in place, we now drop all absolute-
value functions and make a careful attempt to work things
out with a consistent sign convention. Specifically, we de-
fine Q′

i and Qi as positive if they enter Ci, Wi as positive if
it enters Ci, and W0 as positive if it enters E . We then apply
the first law to E and all Carnot cycles {Ci}:

∆EE = −
∑
i

Qi +W0 = 0 (applied to E)

∆Ei = Qi +Q′
i +Wi = 0 (applied to Ci)

where the right hand sides trivially vanish since all pro-
cesses listed are reversible and cyclic, and thus the internal
energy must not change over a single cycle. Now, we con-
sider the composite device (E ◦

⋃
i Ci) ≡ F formed by com-

bining the engine and all Carnot cycles. The heat exchanges {Qi} are now internal to F , and so we can ignore
them altogether14. Thus, the net effect of F is to exchange heat

∑
i Q

′
i with a single heat reservoir at T0 and

13Knowing that the internal energy of the system will depend on its temperature, the first law tells us that either heat or work must be
provided for the temperature to change.

14Another way of seeing this is that for every Qi entering Ci, we have a corresponding −Qi entering E .
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FIGURE 8: Proof of Clausius’ Inequality. In proving this inequality, we consider a cyclic process undertaken by an
engine E , with each step enabled by heat exchange |Qi| with some Carnot engine/refrigerator at temperature Ti. Each
Carnot cycle then exchanges heat |Q′

i| with common reservoir at T0, performing or receiving work |Wi| in the process.
The engine E as a whole then has to either have zero work output or solely work input W0 ≥ 0, otherwise the composite
device formed by (E ◦

⋃
i Ci) ≡ F would constitute a Kelvin violator. Each heat arrow is also bi-coloured red and blue here

to denote the fact that heat exchange can occur in either direction, depending on the change of Ti required at the i-th step
of E ’s cyclic process.

perform total work (W0 +
∑

i Wi). At this point, we should note that if heat enters F and work leaves (there is
no other reservoir for heat to be rejected at), then we have a Kelvin violator! Knowing that we’re headed in this
direction, we apply the first law to F :

∆EF =
∑
i

Q′
i +W0 +

∑
i

Wi = 0

By the condition established above using the Kelvin-Planck statement, we know that
∑

i Q
′
i > 0 is for-

bidden. We thus have the restriction that
∑

i Q
′
i ≤ 0. We now constrain the heats exchanged by each of the

individual Carnot cycles using the Carnot efficiency:

−Qi

Q′
i

=
Ti

T0
=⇒ Q′

i =
T0

Ti
(−Qi) =⇒

∑
i

T0

Ti
(−Qi) ≤ 0

where the initial negative sign is due to the fact that Q′
i enters Ci while Qi leaves it. Factoring out the

common reservoir temperature T0, we obtain Clausius’ inequality as [2]:

∑
i

(−Qi,Ci
)

Ti
=

∑
i

Qi,sys

Ti
≤ 0 (2.4)

where we note that−Qi entering Ci is equivalent to Qi entering E , our system of interest. This tells us that
the heats {Qi} exchanged by a system at some temperatures Ti must sum according to the above inequality,
for any cyclic process. Specifically in the case of a reversible and cyclic process, we would have:

∑
i
Qforward

i

Ti
≤ 0∑

i
Qbackward

i

Ti
≤ 0

=⇒
∑
i

Qi

Ti
= 0
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The equality is implied since the heats from the backward process are flipped in sign with respect to the
heats from the forward process, so the combined inequality implies that they must sum to exactly zero. The
distinction between reversible and irreversible processes here was subtle, and only came up right at the end.
What we did was to start with the assumption of reversibility, but this is not really necessary if we were to
just allow for the cyclic process to be quasistatic so an internal temperature can be defined for each of the
heat exchanges between E and Ci. We thus see that the inequality strictly holds for an irreversible process,
with equality only occurring in the special case of reversibility, where the system is in equilibrium with the
surroundings at every step of the process.

2.5 Entropy as a State Function

Having proven Clausius’ inequality, we now see that the special case of equality for reversible processes looks
a lot like the fundamental theorem of calculus for line integrals, otherwise known as the gradient theorem.
This is simply begging to be turned into a state function, and we will start doing so by dividing the entire
reversible cyclic process into N steps with paths Ci, where the entire cyclic path is traced out by the union of
all small steps as C ≡

⋃
i Ci. Now, each heat exchange Qi can be written in terms of a line integral over the

path variable:

Qi =

∫
Ci

d̄Q

With this, we have the entire sum of paths as:

N∑
i=1

Qi

Ti
=

N∑
i=1

1

Ti

∫
Ci

d̄Q

≈
N∑
i=1

∫
Ci

d̄Q
Ti

where we pull the temperature into the line integral under the assumption that each path is sufficiently
short (N is sufficiently large). Continuing this limit, we thus see:

lim
N→∞

N∑
i=1

Qi

Ti
=

∮
d̄Q
T

= 0 (2.5)

This is an incredible result, as it finally tells us that the combined differential d̄Q/T is an exact differential,
and thus independent of the path traversed in state space! We give the variable formed by this exact differential
the symbol S, and this is what we have come to love (and hate) as entropy:

dS =
d̄Q
T

=⇒ d̄Q = T dS (2.6)

Finite changes in entropy are then quantified by using the path integral as:

∆S = Sf − Si =

∫
C

d̄Q
T

2.6 The (Practical) Second Law

We finally have all the tools we need to derive the second law of thermodynamics in the form that we have
all been used to hearing. For this, we first consider two states of a system A and B such that there are two
processes linking them:
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1. A −→ B: Irreversible

2. B −→ A: Reversible

with the entire cycle A −→ B −→ A being cyclic. Then, by Clausius’ inequality, we have (for the entire
cycle):

∑
i

Qi

Ti
=

∑
j

Qirrev
j

Tj
+
∑
k

Qrev
k

Tk
≤ 0

Notice that for the reversible process, each point has a well-defined temperature since each point is an
equilibrium state and the curve is continuous in the state space. With the continuity criterion satisfied, we can
proceed to infinitesimally subdivide the reversible process and invoke the differential limit:

∑
k

Qrev
k

Tk
=⇒

∫
CB→A

d̄Q
T

= SA − SB

Now, we do the somewhat obvious step of reversing the reversible process. This will flip the signs of each
Qrev

k , so the inequality becomes:

∑
j

Qirrev
j

Tj
≤

∫
CA→B

d̄Q
T

= SB − SA = ∆S

Finally, if we contain the entire system in question within rigid, insulating walls, this constitutes a perfect
isolated system. Then, there cannot be any heat exchange between the system and its surroundings, so we
must have Qirrev

j = 0 at each step. This finally gives us the second law of thermodynamics15:

Definition 2.3: Second Law of Thermodynamics

The entropy of an isolated system can never decrease over the course of its evolution. Mathematically,
this is written as:

∆S =

∫
d̄Qrev

T
≥ 0 (2.7)

with equality only obtained for a reversible process.

As stated previously, the only real isolated system (that we possibly know of) is the Universe as a whole.
This is the origin of the statement that the entropy of the Universe can never decrease. In a typical process that
involves heat exchange between a system and a reservoir, the spontaneous flow of heat from the system to the
reservoir constitutes an irreversible process, since this is an ongoing process of equilibration.

15I vividly remember this moment as an undergraduate, when I saw the derivation of the second law completed from start to finish
(the last nine or so pages) over the course of two hours in a lecture. It was incredibly beautiful and poignant in some strange manner
that I can’t really describe, formalising the intuitive ideas that we have of energy and information being irretrievably lost in microscopic
degrees of freedom, never to return as work. I hope you felt some of that here. It also doesn’t help that I’m currently listening to the final
track of Muse’s album The Second Law as I write this section, the track titled The Second Law: Isolated System; the emotive power of physics
is sometimes felt in moments like these.
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2.7 The Principle of Entropy Maximisation

With an understanding of entropy as applied to idealised constructions in deriving the second law, it is perhaps
wise to apply it to some simple systems to develop some intuition of its mathematical structure. We first
consider the implications that the second law has for the idea of reversibility in isolated systems. For this,
consider an isolated system consisting of a gas in a box. The gas is constrained to reside within some corner
of the box (not occupying the full volume of the box), held in place by some internal constraint such as a
non-porous and rigid membrane as shown in Fig. 9.

FIGURE 9: Free Expansion of an Isolated Gas. Starting with a gas constrained (using some internal membrane) to reside
in a corner of an isolated box (left), we abruptly remove the membrane and allow the gas to freely expand into the vacuum
of the remainder of the box. The final state of the gas is an equilibrium state in which the gas occupies the full volume
of the box (right), and involves the entropy of the gas increasing due to the free expansion. The reverse of this process,
however, cannot occur spontaneously.

In this initial state, the constrained gas is at equilibrium with some parameters (Ei, Vi, Ni). Now we
suppose that the membrane is abruptly removed, allowing the gas to freely expand to occupy the full volume
of the box, in a process known as free expansion (or sometimes also Joule expansion, not to be confused with
the Joule-Thomson process). The gas will now attain some new equilibrium with parameters (Ef , Vf , Nf ).
Since the system is isolated, we expect that energy is conserved (Ei = Ef ) and particle number is conserved
(Ni = Nf ). Furthermore, the free expansion of the gas into a vacuum implies that no work is performed by the
gas, nor is work done on the gas by any other part of the system. Application of the first law to these premises
then leads us to the conclusion that this entire process must have been adiabatic, so ∆Q = 0.

Now, suppose we wanted to study the reverse process — the free compression of an isolated gas. In order
to bring the fully expanded gas back into a corner, we have to perform some work on it to compress it against
its pressure. The first law (with the imposition that ∆E = 0 since this is isolated) then tells us that heat must
be transferred in the process. Specfically, work must be done on the gas and an equal amount of heat must be
extracted from it to keep the internal energy constant. However, since this is occurring from a single source,
this is equivalent to a Kelvin violator where heat is extracted from a reservoir and converted entirely to work
with unit efficiency16. This leads us to the conclusion that the reverse process is not possible, and so the free
expansion process is an irreversible one. How did this happen?

We previously established that dS = d̄Qrev/T ≥ 0 in our statement of the second law, and this process of
free expansion is an ideal example of when equality is no longer achieved. Specifically, the fact that the gas is at
each point in its expansion in a non-equilibrium state (starting from the instant the membrane vanishes) allows

16There is a subtle point to note here — the fact that the internal energy remains constant implies that it must not change in temperature.
Thus, the isothermal compression process is akin to extracting heat from a reservoir at fixed temperature.
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for the total entropy change in the expansion process to be positive, without any heat transfer occurring. This
can be exactly computed for the ideal gas as:

∆S =

∫
dS =

∫ Vf

Vi

p dV

T
=

∫ Vf

Vi

NkB dV

V
= NkB log

(
Vf

Vi

)
> 0 (2.8)

Once in the final equilibrium state, the parameters of the gas are once again well-defined and unchang-
ing, leading to dS = 0 at that point. Seeing that the isolated gas increases its entropy in expansion until it
reaches an equilibrium at which point it is unchanged, we conclude that entropy is maximised at equilibrium
in an unconstrained isolated system. This is the principle of entropy maximisation. This tells us that, in the
equilibrium state, the partial derivatives of the entropy with respect to internal parameters satisfy:(

∂S

∂X

)
E

= 0,

(
∂2S

∂X2

)
E

< 0 (2.9)

where X is any extensive parameter apart from the internal energy (typically in the form of some mechan-
ical parameter). We can go a step further, and show that the second partial derivative of the entropy is negative
at all points on the manifold of states for a system in the state space. We consider a similar situation to the
above, where we have an isolated system containing a gas. We then partition the system into two subsystems
using some internal membrane and consider the parameters of the subsystems and total system. This state of
the system is sometimes known as partial equilibrium, in which every subsystem is locally in equilibrium,
while the composite system as a whole is not. The initial entropies of the subsystems, with the membrane
separating them, are SA(EA, {XA}) and SB(EB , {XB}), while the total entropy at this point is simply the sum
of the two subsystems’ entropies. If we now remove the partition between the subsystems, we expect some
equilibration process to occur which gives us a new equilibrium entropy Stot(Etot, {Xtot}). The second law
tells us that we must have Stot ≥ SA +SB (if we apply the free expansion idea to each subsystem individually,
ignoring the gas filling the other part of the system). Suppose this partition is placed such that the energy E

and other extensive parameters {X} are split between the subsystems according to some parameter λ, that is:

Etot = λEA + (1− λ)EB , Xi
tot = λXi

A + (1− λ)Xi
B

We can then write an inequality for the total entropy:

Stot = S(λEA + (1− λ)EB , λX
i
A + (1− λ)Xi

B)

≥ SA(λEA, λX
i
A) + SB((1− λ)EB , (1− λ)Xi

B)

= λSA(EA, X
i
A) + (1− λ)SB(EB , X

i
B) (2.10)

where we use the idea of extensivity in the last line. This is the defining relation for a strictly concave
function, and establishes that the entropy S of an isolated system is a concave function of its extensive param-
eters. These findings are summarised in a green box here, so the folks who rapidly scroll through will get a
chance to appreciate that this is a very important point.

Definition 2.4: Principle of Entropy Maximisation

The equilibrium value of any unconstrained extensive parameter is that which maximises the entropy
at a fixed value of the internal energy. This implies that the entropy of a system is a concave function
of its extensive parameters, and its maximum point determines the equilibrium values of its extensive
parameters.
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2.8 The Principle of Energy Minimisation

We can now show that the entropy maximisation principle naturally leads to the requirement that the internal
energy of a system in equilibrium is minimised. This can be done in both a physical and mathematical capacity,
and I will attempt to show you both for maximal clarity. We will start with the physical argument first.

Suppose we have a system that is in equilibrium, but is in a state which does not have the minimum
internal energy. We can adiabatically extract this energy through work, lowering its internal energy. Then,
we convert this work entirely into heat using an engine with zero efficiency and direct that heat back into
the system. This brings the internal energy of the system back to its initial value, but the introduction of
extra heat would have now increased the entropy of the system past its previous equilibrium value. This is in
direct contradiction with the entropy maximisation principle! We thus conclude that the internal energy of the
system must have been minimised at equilibrium, such that no useful work can be extracted from a system in
an equilibrium state.

Now, we turn to the mathematical argument which will aid our geometric interpretation of thermodynam-
ics. We first consider the first derivative at equilibrium (which we expect to vanish), denoting this quantity by
Y :

Y ≡
(
∂E

∂X

)
S

= −
(∂S/∂X )E
(∂S/∂E )X

= −T
(
∂S

∂X

)
E

= 0 (2.11)

where we have used the triple product rule in the first equality, and the thermodynamic definition of
temperature17 in the second equality. Even without assuming that this is an extremal point, we see that the
first partial derivative of the internal energy with respect to the entropy must vanish at equilibrium, as imposed
by the entropy maximisation principle. We now look at the second derivative to determine if this extremum is
a minimum or maximum point:

(
∂2E

∂X2

)
S

=

(
∂Y

∂X

)
S

=

(
∂Y

∂E

)
X

(
∂E

∂X

)
S

+

(
∂Y

∂X

)
E

=

(
∂Y

∂E

)
X

Y︸ ︷︷ ︸
=0 at equilibrium

+

(
∂Y

∂X

)
E

= − ∂

∂X

[
(∂S/∂X )E
(∂S/∂E )X

]
E

= −
∂2S

/
∂X2

∂S/∂E
+

∂S

∂X

∂2S
/
∂X∂E

(∂S/∂E )
2

= −T ∂2S

∂X2
> 0 at

∂S

∂X
= 0 (2.12)

which confirms that the internal energy is minimised at equilibrium, agreeing with the above. In a very
similar fashion to the above, we can also show that the internal energy is a convex function of its extensive
parameters. Once again, we will box this up in green to ensure that everyone has a fair chance of seeing this
content.

17Technically I only define this in a later section, but having established that d̄Q = T dS, this should be clear by this point.
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FIGURE 10: Entropy Maximisation and Energy Minimisation on a Manifold. The manifold of states available to a
system in the space of extensive parameters must take on a form such that the entropy is concave in the other parameters,
while the internal energy is convex in the other parameters. This gives maxima for the curves of fixed internal energy
(red), which determine the equilibrium parameters of the system and also coincide with the minima of the curves of fixed
entropy (blue).

Definition 2.5: Principle of Energy Minimisation

The equilibrium value of any unconstrained extensive parameter is that which minimises the internal
energy at a fixed value of the entropy. This implies that the internal energy of a system is a convex
function of its extensive parameters, and its minimum point determines the equilibrium values of its
extensive parameters.

Geometrically, we can visualise the structure of a manifold of states available to a system as being a surface
function S as a function of the internal energy E and other extensive parameters {X}. This function must be
single-valued and concave, which then naturally leads to a picture of convexity when rotated to view the
surface as that of the energy E in terms of the entropy S and extensive parameters {X}. This is the beginning
of the geometric picture of thermodynamics, as constructed by Constantin Carathéodory in 1909. This leads
to a very rigorous (yet equivalent) framework of thermodynamics, rooted in differential geometry and partial
differential equations while still agreeing with the predictions of statistical mechanics. While acknowledging
that this picture exists (and I strongly encourage you to read up on it if you are interested), we will typically
only make references to the ideas of Carathéodory’s geometric picture, without rigorously developing the
ideas in the same way that he did.

2.9 Total Differentials and Measurability

Having established the existence of a path-independent state variable S that characterises the heat exchanged
by a system, we now want to study how this plays into the first law. We first assume that a particular system
takes on an equation of state of the form f(p, V, T ) = 0, and consider the total differentials of the energy E and
entropy S in terms of measurable quantities such as V , T , CV , etc. Specifically, we want to show that finite
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changes in the energy and entropy of such a system can be measured without any knowledge of the equation
of state.

Since there exists an equation of state constraining one of {p, V, T}, we can choose one variable to be
dependent — we choose the pressure p for this. Then, we begin with the total differential of the internal
energy:

dE =

(
∂E

∂T

)
V

dT +

(
∂E

∂V

)
T

dV

From the definition of the entropy as a state variables, we write:

dS =
d̄Q
T

=
dE

T
+

p dV

T

=
1

T

(
∂E

∂T

)
V

dT +
1

T

[(
∂E

∂V

)
T

+ p

]
dV

≡
(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

where we write the last line with the knowledge the S has an exact differential. Using Schwarz’ theorem,
we now compare the second derivatives of S by taking the cross-partial derivatives of each partial derivative:[

∂

∂V

(
∂S

∂T

)
V

]
T

=

[
∂

∂T

(
∂S

∂V

)
T

]
V

Thus, we can enact these cross-partial derivatives on the above expression for dS to obtain:

���������1

T

[
∂

∂V

(
∂E

∂T

)
V

]
T

= − 1

T 2

(
∂E

∂V

)
T

+
���������1

T

[
∂

∂T

(
∂E

∂V

)
T

]
V

− p

T 2
+

1

T

(
∂p

∂T

)
V

with the cancellation performed using Schwarz’ theorem again. Finally, multiplying through by T 2 gives
us:

p+

(
∂E

∂V

)
T

− T

(
∂p

∂V

)
V

= 0 (2.13)

Returning to the total differential of the internal energy, we see that (∂E/∂V )T can be eliminated using
Eq. 2.13, while (∂E/∂T )V is simply the constant-volume heat capacity CV . This returns:

dE = CV dT +

[
T

(
∂p

∂T

)
V

− p

]
dV (2.14)

Returning to the total differential of the entropy, we see that the prefactor of dV can be eliminated using
Eq. 2.13 to obtain:

dS =
CV

T
dT +

(
∂p

∂T

)
V

dV (2.15)

Thus, the two total differentials in Eqs. 2.14 and 2.15 are now solely in terms of measurable quantities.
Each of these can be measured as follows:

• T : Use a thermometer.

• p: Use a manometer.

• CV : Use a calorimeter.
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• (∂p/∂T )V : Use a manometer and thermometer with a box.

Having dealt with the total differential of entropy, we see that the heat capacity naturally appears in
its expression. This can be formalised and generalised to other heat capacities for some other constant state
variables. From Eq. 2.15, we see that we can hold the volume of our system constant to obtain:

CV = T

(
∂S

∂T

)
V

(2.16)

We can obtain a similar expression for Cp, albeit with a little more work. From Eq. 2.15 again, we convert
the dependencies of V to that of p by using the total differential of V (p, T ):

dS =
CV

T
dT +

(
∂p

∂T

)
V

dV

=
CV

T
dT +

(
∂p

∂T

)
V

[(
∂V

∂T

)
p

dT +

(
∂V

∂p

)
T

dp

]

=

[
CV

T
+

(
∂p

∂T

)
V

(
∂V

∂T

)
p

]
︸ ︷︷ ︸

( ∂S
∂T )p

dT +

(
∂p

∂T

)
V

(
∂V

∂p

)
T︸ ︷︷ ︸

( ∂S
∂p )T

dp

where we identify in the last line that the coefficients of each individual differential are equal to the partial
derivatives of S using the total differential dS. We now look at the coefficient of dT :

(
∂S

∂T

)
p

=
CV

T
+

(
∂p

∂T

)
V

(
∂V

∂T

)
p

T

(
∂S

∂T

)
p

= CV + T

(
∂p

∂T

)
V

(
∂V

∂T

)
p

However, the second term on the right can be modified using Eq. 2.13 to give:

T

(
∂S

∂T

)
p

= CV +

[
p+

(
∂E

∂V

)
T

](
∂V

∂T

)
p

This is nothing more than the result we had previously obtained in Eq. 1.11! Thus, we can write the
constant-pressure heat capacity as:

Cp = T

(
∂S

∂T

)
p

(2.17)

The resemblance of this expression for Cp to that of Eq. 2.16 is no coincidence, and is really just a specific
case of a more general relationship that is easily seen. Knowing that the inexact differential for heat is now
given by d̄Q = T dS, we can use the definition of the heat capacity from Eq. 1.6 to write:(

d̄Q
∂T

)
y

= T

(
∂S

∂T

)
y

≡ Cy (2.18)

Note that this is not obtained by simply taking the partial derivative of T dS with respect to T at constant
y, but rather is obtained by dividing T∆S by a finite ∆T , before taking the limit of ∆T → 0 at constant y.

As a final point, we can also consider rewriting the heat capacity difference using our new knowledge
of the entropy. This is valuable in experimental contexts, since a measurement of Cp is significantly harder
to perform than one of CV . It turns out that we can rewrite the heat capacity difference purely in terms of
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response functions, which are far easier to study in the lab. We start by considering the total differential of
S(T, V ). Dividing this by finite ∆T and taking the ∆T → 0 limit at constant p, we obtain:

(
∂S

∂T

)
p

=

(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

Cp

T
=

CV

T
+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

=⇒ Cp − CV = T

(
∂S

∂V

)
T

(
∂V

∂T

)
p

Now, we invoke the definition of the isobaric (constant p) to eliminate (∂V /∂T )p. To get rid of the
(∂S/∂V )T term, we use the result from Eq. 2.15, where we have (∂S/∂V )T = (∂p/∂T )V . This returns:

Cp − CV = T

(
∂p

∂T

)
V

(
∂V

∂T

)
p

This nearly resembles the compressibility κ, except with a permutation of all the variables. We thus fix
this by invoking the triple product rule:(

∂X

∂Y

)
Z

(
∂Y

∂Z

)
X

(
∂Z

∂X

)
Y

= −1

for any set of variables {X,Y, Z}which are expressible in terms of each other. Applying this to (∂p/∂T )V ,
we have: (

∂p

∂T

)
V

= −
(
∂V

∂T

)
p

(
∂V

∂p

)−1

T

Finally, we plug all of this into the heat capacity difference to arrive at:

Cp − CV = −T
(
∂V

∂T

)2

p

(
∂V

∂p

)−1

T

=
TV βp

κT
(2.19)

where βp is the isobaric expansivity and κT is the isothermal compressibility. Thus, if one is able to
measure CV for a given system, Cp can be obtained by simply measuring two volume-response functions
instead.

3 Thermodynamic Potentials

The typical problem statement in thermodynamics is one where we consider an initially isolated system with
total energy E0, volume V0 and particle number N0. These numbers are always conserved for the entire isolated
system as a whole (otherwise it won’t be isolated). Within the system, there are then two or more subsystems
that are separated by internal partitions. These partitions must be adiabatic (preventing E transfer), rigid
(preventing V transfer) and impermeable (preventing N transfer). Thus, to set the problem in motion, one or
more of these partitions must be relaxed to allow some form of transfer. This sets off spontaneous processes,
which ultimately allow the system to settle into a new equilibrium state. In determining the new equilibrium
values of each partitioned region, we want to get rid of all forms of path dependence in the independent
variables, so that knowing the initial and final states is sufficient to completely determine the changes in E(i),
V (i) and N (i) for the i-th partitioned region. For this, we must return to the first law of thermodynamics.
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3.1 The Fundamental Thermodynamic Relation

The first and second laws of thermodynamics can be combined to produce what many call the fundamental
thermodynamic relation in energy representation:

dE = T dS +

r∑
i=1

Fi dxi︸ ︷︷ ︸
mechanical

+

s∑
j=1

µj dNj︸ ︷︷ ︸
chemical

(3.1)

The first term on the right hand side represents the heat change, while the next two terms represent all
possible forms of work that may be done on the system. Broadly, these are classified into either mechanical
work or chemical work. For mechanical work, the extensive variable being changed is typically some sort of
linear dimension, with a conjugate intensive variable corresponding to the constant quantity at equilibrium
(e.g. allowing for a system to exchange volume with its surroundings ensures that it is isobaric with the
environment). For chemical work, the extensive variable is typically a particle number, with the conjugate
intensive variable being an associated chemical potential that governs the ease of particle flow. We see that we
have (1+r+s) degrees of freedom for the energy to change through the extensive variables, so we should also
have (1 + r + s) equations of state. These are simply obtained by writing the total differential of the internal
energy as:

dE =

(
∂E

∂S

)
{xi},{Nj}

dS +

r∑
k=1

(
∂E

∂xk

)
S,{xi̸=k},{Nj}

dxk +

s∑
k=1

(
∂E

∂Nk

)
S,{xi},{Nj ̸=k}

dNk (3.2)

Comparing this with Eq. 3.1, we thus obtain the (1 + r + s) equations of state:

T = T (S, {xi}, {Nj}) =
(
∂E

∂S

)
{xi},{Nj}

(3.3)

Fk = Fk(S, {xi}, {Nj}) =
(
∂E

∂xk

)
S,{xi̸=k},{Nj}

(3.4)

µk = µk(S, {xi}, {Nj}) =
(

∂E

∂Nk

)
S,{xi},{Nj ̸=k}

(3.5)

Thus, knowledge of all the equations of state (as functions of the extensive variables only) gives us total
knowledge of the total differential for the internal energy, which completely describes the system since it
returns the fundamental thermodynamic relation.

3.2 The Euler Equation

In the energy representation for the fundamental relation, we see that E is an extensive function of (1 + r + s)

extensive variables. Thus, we can write:

E(λS, {λxi}, {λNi}) = λE(S, {xi}, {Ni})

We now differentiate both sides of the above relation by the scaling parameter λ (take the total derivative
d/dλ , not the partial derivative ∂/∂λ ):

27



∂E(λS, {λxi}, {λNi})
∂(λS)

∂(λS)

∂λ
+

r∑
i=1

∂E(λS, {λxi}, {λNi})
∂(λxi)

∂(λxi)

∂λ

+

s∑
j=1

∂E(λS, {λxi}, {λNi})
∂(λNj)

∂(λNj)

∂λ
= E(S, {xi}, {Ni})

Then, we simply set λ = 1 and use the equations of state from above to arrive at:

TS +

r∑
i=1

xiFi +

s∑
j=1

Njµj = E(S, {xi}, {Ni}) (3.6)

This result is known as the Euler equation, and is an incredibly useful relation which tells us that the
energy of a system in its natural variables (S, V,N) can be expressible in terms of the products of all conjugate
variable pairs, when they are also expressed in terms of the natural variables (S, V,N).

3.3 The Gibbs–Duhem Relation

The Euler equation provides us with a link between a thermodynamic quantity, such as the internal energy
E, and its intensive and extensive constituents. This also encodes another relationship which will reveal that
intensive quantities are fundamentally constrained as compared to their extensive counterparts. To derive this,
we first take the total differential of the Euler equation:

dE = T dS + S dT +

r∑
i=1

(Fi dxi + xi dFi) +

s∑
j=1

(µj dNj +Nj dµj)

We now use the fundamental relation from Eq. 3.1 to cancel corresponding terms from both sides, arriving
at:

S dT +

r∑
i=1

xi dFi +

s∑
j=1

Nj dµj = 0 (3.7)

This is known as the Gibbs–Duhem relation, and it tells us that there are only (r + s) independent in-
tensive variables (as compared to (1 + r+ s) independent extensive variables) in describing a thermodynamic
system. That is, one intensive variable can always be expressed in terms of all others. This relation hints
at a more fundamental geometric theory underlying thermodynamics, since the dimensionality of a purely
intensive subspace is smaller than an extensive one. We will discuss these implications in a later section.

3.4 The Entropy Representation

In a similar manner to the energy representation for the fundamental relation and its associated thermody-
namics, we also have the entropy representation, where the total differential of the entropy is instead used to
derive equations of state in terms of its natural extensive variables (E, V,N). This is written:

dS =

(
∂S

∂E

)
{xi},{Nj}

dE +

r∑
i=1

(
∂S

∂xi

)
E,{xk ̸=i},{Nj}

dxi +

s∑
j=1

(
∂S

∂Nj

)
E,{xi},{Nk ̸=j}

dNj (3.8)

Comparing the partial derivatives to Eq. 3.1, we thus obtain the equations of state for the entropy repre-
sentation as:
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1

T
=

1

T (E, {xi}, {Nj})
=

(
∂S

∂E

)
{xi},{Nj}

(3.9)

Fi

T
=

Fi(S, {xi}, {Nj})
T

= −
(
∂S

∂xi

)
E,{xk ̸=i},{Nj}

(3.10)

µj

T
=

µj(S, {xi}, {Nj})
T

= −
(

∂S

∂Nj

)
S,{xi},{Nk ̸=j}

(3.11)

which returns the fundamental relation in a more useful form as:

dS =
1

T
dE −

r∑
i=1

Fi

T
dxi −

s∑
j=1

µj

T
dNj (3.12)

This breaks down the entropy as a function of (1+r+s) extensive variables, with corresponding conjugate
intensive variables as the coefficients. Since this is parametrised by the same number of extensive quantities
as the internal energy, we say that the energy and entropy representations are equivalent.

3.5 Conditions for Thermodynamic Equilibrium

To study the conditions required for thermodynamic equilibrium, we can use our newly developed idea of the
second law to impose bounds on how a system’s entropy should behave. For simplicity, we will only consider
mechanical work in the form of (−p dV ), along with a single particle species (so s = 1). We first consider a
system partitioned into two subsystems, such that the total system is isolated and out of equilibrium to begin
with. The qualifier that the system is isolated now implies that the total energy E, total volume V and total
particle number N are conserved. Then, we notice that the entropy being an extensive function implies that it
must be additive for the two systems. Mathematically, we say:

S(E, V,N) = S(1)(E(1), V (1), N (1)) + S(2)(E(2), V (2), N (2))

Since the system is isolated, we know that dS ≥ 0, with equality only achieved either when the system is
undergoing a reversible process, or when thermodynamic equilibrium has already been attained (and hence
no state variables are changing). We can then consider the total differential for the entropy of the isolated
system:

dS = dS(1) + dS(2)

=

(
∂S(1)

∂E(1)

)
V (1),N(1)

dE(1) +

(
∂S(1)

∂V (1)

)
E(1),N(1)

dV (1) +

(
∂S(1)

∂N (1)

)
E(1),V (1)

dN (1)

+

(
∂S(2)

∂E(2)

)
V (2),N(2)

dE(2) +

(
∂S(2)

∂V (2)

)
E(2),N(2)

dV (2) +

(
∂S(2)

∂N (2)

)
E(2),V (2)

dN (2)

=

(
1

T (1)
− 1

T (2)

)
dE(1) +

(
p(1)

T (1)
− p(2)

T (2)

)
dV (1) −

(
µ(1)

T (1)
− µ(2)

T (2)

)
dN (1)

where in the last line, we use the fact that dE(1) + dE(2) = dE = 0, and likewise for the other exten-
sive variables. Now, setting dS = 0 at equilibrium tells us that each term on the right hand side must have
its coefficient vanish. This leads us to the three conditions of thermodynamic equilibrium on the intensive
variables:
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T (1) = T (2) (3.13)

p(1) = p(2) (3.14)

µ(1) = µ(2) (3.15)

To better understand how these intensive variables characterise a system approaching thermodynamic
equilibrium, we consider the same setup but now relax the condition that dS = 0. For simplicity, we will
assume that the pressures and chemical potentials are equal, and only a temperature differential exists, since
the argument for the other two cases is identical. In the approach to equilibrium, each of the subsystems acts
as a heat bath for the other, with the two having a finite temperature difference. We aim to show that a temper-
ature differential between the subsystems will spontaneously induce a flow of energy to lower this differential.
For this, we consider the system approaching equilibrium at one instant of time:

dS > 0 =⇒
(

1

T (1)
− 1

T (2)

)
dE(1) > 0

In the next instant, the energy of each subsystem would have changed due to this relation. Without loss
of generality (WLOG), we assume:

E(1) −→ E(1) + dE(1), E(2) −→ E(2) − dE(1)

Now, if T (1) > T (2), then we see that dE(1) < 0, implying that energy flows from subsystem 1 into
subsystem 2. Likewise, if T (2) > T (1), then we see that dE(1) > 0, implying that energy flows from subsystem
2 into subsystem 1 instead. This demonstrates that any isolated system undergoing a process of equilibration
will spontaneously transfer energy, volume and particles in order to reach its equilibrium set of extensive
variables, in perfect agreement with Def. 0.1.

3.6 Legendre Transformations

In real thermodynamic problems, it is very rare that we will be able to truly keep constant the variables shown
in the subscripts of the partial derivatives. For instance, the addition of particles (dN > 0) at constant entropy18

seems like a wildly impossible thing to do in a real experimental setting, yet this is the sort of precise control
the equations of state require when working in the energy representation. We thus need to find a way to
modify the fundamental relation to suit physical problems where the variables within our control are not all
extensive variables, and this is where we have to introduce a neat mathematical tool.

We first consider some function f(x) whose independent variable is x. In the space of R2, the function
is specified as the locus of points (x, f(x)), implying that two parametrised degrees of freedom (equivalently,
coordinates) are required to construct said locus. Suppose we now wanted to instead construct the locus using
the gradient (conjugate variable to x) of the function ∂f/∂x = α as the independent variable, rather than the
x values. The naïve guess here might be to simply obtain an expression of the form:

∂f

∂x
= α(x) =⇒ x = x(α)

by inverting the relationship of the gradient in terms of x. We could then simply plug this back into f(x) to
obtain a new function f(x(α)) ≡ g(α). However, this would constitute a massive loss of information, as there
are infinitely many curves which would obey the same relation up to a translation parallel to the x-axis. In the

18Technically, this could be done as an adiabatic process, though it is still hard.
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FIGURE 11: Duality between Point Geometry and Line Geometry. (Left) A curve is constructed as a locus of points
satisfying some condition (x, f(x)). Each point is uniquely specified by two degrees of freedom – the point coordinates.
(Right) Equivalently, a locus can be constructed using a family of lines tangent to the curve at each point, with the two
degrees of freedom now being given in the form of the slopes and intercepts.

context of thermodynamics, this would be equivalent to an attempt at expressing the fundamental relation in
terms of the temperature rather than the entropy, but would be an incomplete description of the system owing
to the mathematical loss of information. We thus need another degree of freedom to rectify this inadequacy.

Instead of specifying a locus by its parametrised set of coordinates, one can also specify it using a family
of lines which are tangent to the curve at each point. These tangent lines also have two degrees of freedom:
the slope and y-intercept. By specifying a set of slopes α and the corresponding intercepts β, we obtain a set of
fixed lines whose envelope19 then reproduces the original locus. This allows us to constrain the gradient values
via a new function β(α), which takes in the gradient as the independent value and returns the y-intercept. For
a given point (x, f(x)), this is not too hard to compute:

α =
f(x)− β

x
=⇒ β(α) = f(x)− αx

This process of obtaining the new function β(α) from f(x) is known as the Legendre transformation.
While we have only considered a function of a single variable here, the process is easily generalised to mul-
tivariate functions, since the partial derivative keeps all other independent variables constant, so Legendre
transformations can be successively performed on each independent variable as required. In terms of its total
differential, we have:

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy ≡ udx+ v dy (3.16)

where u = u(x, y) = (∂f/∂x )y and v = v(x, y) = (∂f/∂y )x are simply the partial derivatives with respect
to the constituent variables. The pairs of variables (u, x) and (v, y) are called conjugate variable pairs. Using
the Legendre transformation, we can swap the dependency of a function between one of its variables and that
corresponding variable’s conjugate as:

g(u, y) = f(x(u, y), y)− x(u, y)u (3.17)

19There is a lot of analytical work that goes into this definition of an envelope of a set of lines, but we will not let that prevent us from doing
physics here. This can be studied in any elementary textbook on differential geometry, or even several advanced textbooks on classical
dynamics.

31



where we assume that it is possible to invert u(x, y) to obtain an expression for x(u, y). Now, we check the
total differential of this new function:

dg = df − xdu− udx

= udx+ v dy − x du− udx

= −x du+ v dy

In this, we see that the total differential of g(u, y) has a pure dependency on u and y only! Furthermore, the
conjugate variable swap on (u, x) was successfully performed, with x now taking on the role of −(∂g/∂u )y .
Thus, given a function f(x, y), we can describe the general procedure for enacting a Legendre transformation
on the conjugate variable pair (u, x) as follows:

Definition 3.1: Procedure for Legendre Transformations

To transform a function f(x, y) into a new function g(u, y), where the variable x is expressible in terms
of x(u, y), we use the following procedure:

1. Define g(u, y) = f(x, y)− xu as the new transformed function.

2. For every appearance of x in g, replace this with x = x(u, y).

3. Rewrite the total differential of g using the new variables u and y.

3.7 The Four Fundamental Thermodynamic Potentials

We will now explore how the Legendre transformation is used in turning thermodynamic potentials (such
as the internal energy) into other potentials which are more useful for suitably controlled systems. For this
section, I will assume mechanical work only comes in the form of p dV and chemical work is only done on a
single species (this just implies that s = 1)20. We begin with the fundamental thermodynamic relation in the
energy representation:

dE = T dS − p dV + µdN (3.18)

This form of the internal energy is our first thermodynamic potential. It should be noted that this is only
true when it is expressed in terms of the extensive variables S, V and N , otherwise it loses a great deal of mean-
ing in thermodynamics. We now transform E into another potential by enacting the Legendre transformation
on the (T, S) conjugate variable pair, obtaining:

F (T, V,N) = E(S(T, V,N), V,N)− TS(T, V,N) (3.19)

dF = −S dT − p dV + µdN (3.20)

This new potential F (T, V,N) is called the Helmholtz free energy, and has the canonical variables of T , V
and N . It is the suitable potential to be used when a system is allowed to exchange heat with its environment
through coupling with a large reservoir, enabling equilibration to a fixed temperature T . It should also be

20The generalisation is quite simple, and will only make the notation look clunkier here with little added intuition (law of diminishing
returns).
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noted that in Eq. 3.19, we should really be using ⟨E⟩ instead of E, to explicitly denote that we are interested
in the macroscopic energy, and not the energy of any one given microstate. Another potential is obtained by
taking the Legendre transform of the internal energy, only this time we enact it on the conjugate variable pair
(p, V ) to obtain:

H(S, p,N) = E(S, V (S, p,N), N) + pV (S, p,N) (3.21)

dH = T dS + V dp+ µdN (3.22)

This new potential H(S, p,N) is called the enthalpy, and has the canonical variables of S, p and N . The
enthalpy is the ideal potential for systems which are allowed to exchange volume with their environment but
not heat, reaching an equilibrium at a fixed pressure p. Finally, we can take the Legendre transform of the (T, S)
conjugate variable pair on the enthalpy (or equivalently of the (p, V ) conjugate variable pair on the Helmholtz
free energy) to obtain:

G(T, p,N) = E − TS + pV (3.23)

dG = −S dT + V dp+ µdN (3.24)

This final potential G(T, p,N) is called the Gibbs free energy, and has the canonical variables of T , p and
N . As you may have guessed, this potential is ideal for systems which exchange both heat and volume with
their surroundings, thus enabling an equilibrium characterisation at fixed temperature and pressure. At this
point, one may ask why we can’t simply Legendre transform the final conjugate variable pair (µ,N) as well.
Indeed, it is possible to do so, but this would give us a “potential” that is fully defined in terms of intensive
variables. As we established previously, there is always one less degree of freedom in a set of conjugate
intensive variables as there are present in the extensive variables, so this final potential turns out to identically
vanish since its total differential is exactly given by the Gibbs–Duhem relation.

3.8 Maxwell Relations

To wrap up this section, we will explore a neat consequence of the partial derivatives involved in the equations
of state. Thusfar, we have seen that all thermodynamic equations of state are essentially just partial derivatives
of the form (∂X/∂Y )Z,W . Despite there being many such derivatives, the extent of their independence is
limited by Schwarz’ theorem, which links the second partial derivatives by symmetry. Specifically, Schwarz’
theorem states:

∂

∂Y ′

[(
∂X

∂Y

)
Z

]
Z′

=
∂

∂Y

[(
∂X

∂Y ′

)
Z′

]
Z

(3.25)

which is simply a statement that partial derivatives commute. Given a thermodynamic potential in its
(1 + r + s) natural variables, there are then

(
1+r+s

2

)
unique pairs of mixed second partial derivatives. Evaluat-

ing the inner partial derivative in each of these pairs then links the first partial derivatives of two equations of
state, constituting what is known as a Maxwell relation. For any thermodynamic potential of (1 + r + s) vari-
ables, there are thus

(
1+r+s

2

)
Maxwell relations available. As an example, we consider the available Maxwell

relations for the internal energy (assuming r = s = 1). From Eq. 3.18, we take all possible mixed second partial
derivatives and impose equality via Schwarz’ theorem to write:
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(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

=
∂2E

∂S∂V
(3.26)(

∂T

∂N

)
S

=

(
∂µ

∂S

)
N

=
∂2E

∂S∂N
(3.27)

−
(

∂p

∂N

)
V

=

(
∂µ

∂V

)
N

=
∂2E

∂V ∂N
(3.28)

The Maxwell relations for all other thermodynamic potentials can be derived in an identical fashion.

3.9 Minimisation of the Helmholtz Free Energy

Previously, we had established extremal principles for the two thermodynamic potentials of entropy and in-
ternal energy in isolated systems. Specifically, we showed that the internal energy and entropy obey:

dS = 0, d2S < 0 (3.29)

dE = 0, d2E > 0 (3.30)

where these differentials refer to infinitesimal changes in the potentials (as a result of infinitesimal changes
in the underlying extensive variables) which take the system away from equilibrium21. We now want to gen-
eralise these extremal principles to the new potentials obtained from the Legendre transformations, such that
we can study the extremal properties of systems coupled to some reservoir. I will denote the entropy, en-
ergy and other extensive variables of the small closed subsystem by (S,E, · · · ) and those of the reservoir by
(SR, ER, · · · ), assuming the total system containing the subsystem and reservoir form an isolated system. We
now apply the extremal principles to the combined system:

d(S + SR) = 0, d2(S + SR) < 0

d(E + ER) = 0, d2(E + ER) > 0

Now, we consider the reservoir’s physical properties as opposed to those of the subsystem and demand
that it is incredibly large in comparison. This means that it will realistically have an effectively infinite heat
capacity CR. Physically, this arises from the intuition that transferring any finite amount of heat in or out of the
subsystem will have no measurable effect on the reservoir’s temperature. Accordingly, the second differentials
will behave as:

∂2ER

∂S2
R

=
∂TR

∂SR
=

TR

CR
−→ 0

We thus conclude that the second-order changes in the bath quantities do not contribute to the total dif-
ferentials, so we have:

d(S + SR) = 0, d2S < 0

d(E + ER) = 0, d2E > 0

Assuming that the subsystem and reservoir are only coupled through heat transfer and the combined total
system is isolated, we can write the fundamental relation (in energy representation) for the reservoir as:

21I know that d2 is a horrible abuse of notation, but you know exactly what I mean.
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dER = TR dSR

Now, we use the first-order differentials of the entropy and internal energy to switch the reservoir quan-
tities to those of the system:

dE = TR dS =⇒ d(E − TRS) = 0

with caution given to the signs on either side. Finally, we recognise that the condition of thermal equilib-
rium between the subsystem and reservoir demands that T = TR

22, so this differential simply states that the
free energy F = E − TS of the subsystem is extremised at equilibrium! The stationarity of the temperature
then also allows us to write:

d2(TRS) = TR d2S < 0

Together with d2E > 0, this gives us a positive second-order differential which specifies that the extremal
point of the free energy is a minimal point! This is known as the principle of Helmholtz free energy min-
imisation. It should be noted that while this demonstrates the convexity of F in its extensive parameters, the
Legendre transformation performed on the extensive parameter S now implies that F is a concave function of
the intensive parameter T .

Definition 3.2: Principle of Free Energy Minimisation

The equilibrium value of any unconstrained internal parameter in a system that is in thermal contact
with a heat reservoir is that which minimises the Helmholtz free energy of the system, within the
manifold of states for which T = TR. This implies that the Helmholtz free energy of a system is a
convex function of its extensive parameters and a concave function of its intensive parameters.

4 The Third Law of Thermodynamics

With some basic intuition for the concept of entropy now established, we turn to study its behaviour at low
temperatures, which reveals some interesting consequences for physical systems in general. From the defini-
tion of finite entropy changes:

∆S = Sf − Si =

∫
C

d̄Q
T

we expect that there should be some special treatment to account for possibly singular behaviour as T → 0.
This motivates a third law of thermodynamics, to ensure that the entropy remains well-behaved at the absolute
zero of the temperature scale while allowing for a definition of zero entropy that is consistent with statistical
mechanics. This way, entropy can be treated in an absolute manner (as opposed to finite differences) in a
similar manner to the absolute temperature. For systems that are coupled to volume or particle reservoirs, the
minimisation principles for their respective thermodynamic potentials can be similarly shown.

22This also implies that dT = 0 at equilibrium, so we can pull the temperature into the differential without consequence.
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4.1 The Nernst Postulate

In 1907, Walther Nernst published a series of lectures titled Experimental and Theoretical Applications of Thermo-
dynamics to Chemistry. In it, he noted a peculiar result where the Gibbs free energy and enthalpy of a system
tended to the same constant value in the low temperature limit. With experimental verification at low temper-
atures, he continued to study this phenomenon for several years before putting forth his statement of the third
law of thermodynamics, commonly known as the Nernst postulate [1].

Definition 4.1: Third Law of Thermodynamics

The Nernst postulate states that the entropy of a thermodynamic system goes to a constant for any set
of thermodynamic variables {Xi} as the temperature goes to zero. Mathematically, this is written as:

lim
T→0

S(T, {Xi}) = S0 (4.1)

This constant is independent of any of the thermodynamic variables, including the temperature.

Nernst’s statement has shown to be true for all known real systems, including quantum mechanical sys-
tems. There is also a stronger statement by Max Planck, which states that the entropy of a thermodynamic
system should tend towards zero as the temperature goes to zero. Planck’s statement is true for most idealised
classical systems, but fundamentally breaks down for quantum systems where the spin degree of freedom is
still present. In the zero temperature limit, the presence of a spin degree of freedom (with no magnetic field,
and hence a degeneracy in the spin states) allows the entropy to tend to kB log 2 per particle23.

As an example of how the third law is applied to a real system in the form of the Nernst postulate, we
can consider the entropy for a classical ideal gas based on the total differential we obtained in Eq. 2.15. For an
ideal gas, we easily see that this can be integrated to give:

S(T, V ) = CV log

(
T

T0

)
+NkB log

(
V

V0

)
+ S0

where the integration constants appear as some reference temperature T0 and volume V0, along with an
arbitrary constant S0. In the zero temperature limit, we see that the entropy then tends to −∞, which is a
violation of the third law. This leads us to the conclusion that the classical ideal gas model is unphysical, and
cannot possibly give meaningful results in the low temperature limit.

4.2 Vanishing Heat Capacities

We now explore some related consequences of the third law on the response functions for a physical system.
For this, we first consider heating a system with all extensive thermodynamic variables kept constant. This
gives the entropy change as:

∆S = S(T, {Xi})− S(0, {Xi}) =
∫ T

0

dT ′ C{Xi}(T
′)

T ′

For a well-behaved function as T → 0, we demand that this integral must converge. To deal with this
more simply, we can expand the heat capacity as a power series in the temperature:

23This is easily seen using the Gibbs entropy formula.
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C{Xi}(T ) =

∞∑
n=1

cnT
n

where we ignore all powers n ≤ 0 since they will clearly result in divergent behaviour. Now, taking the
zero temperature limit, we have:

lim
T→0

C{Xi}(T ) = lim
T→0

∞∑
n=1

cnT
n = 0 (4.2)

Thus, we conclude that the heat capacity must vanish in the zero temperature limit! This means that an
infinitesimal addition of heat at zero temperature will result in an infinite increase in temperature, which is
clearly unphysical and thus is a first hint that zero temperature itself is not physically attainable.

4.3 Vanishing Thermal Expansivities

We can also perform a similar analysis of the thermal expansivity of a system in the zero temperature limit.
We first define the generalised thermal expansivity for any generalised displacement:

βFi
=

1

xi

(
∂xi

∂T

)
Fi

(4.3)

where Fi and xi form a conjugate variable pair for mechanical work. Now, we use the Maxwell relation
obtained from the total differential of the Gibbs free energy:(

∂S

∂Fi

)
T

=

(
∂xi

∂T

)
Fi

to write the generalised expansivity as:

βFi
=

1

xi

(
∂S

∂Fi

)
T

Since we know that the entropy tends to a constant in the zero temperature limit according to the Nernst
postulate, the partial derivative on the right must identically vanish, leaving us with the result that the gener-
alised expansivity itself vanishes in the zero temperature limit!

4.4 The Unattainability of Absolute Zero

We are now ready to confront perhaps the most peculiar consequence of the third law — the unattainability of
absolute zero temperature24. To approach this, we first consider cooling a system by varying some parameter
X1 → X2 to force a temperature change T1 → T2. The entropy change at any temperature in such a process is
then given by:

S(T,X) = S0 +

∫ T

0

dT ′ CX(X,T ′)

T ′

Now, we assume (for sake of contradiction) that we can cool the system from T1 > 0 to absolute zero
adiabatically through some parameter change X1 → X2. Then, we must have:

24Note that there is nothing here which really prevents a system from attaining negative temperatures. You should be aware by now
that this is absolutely possible, it’s just not possible to reach negative temperatures by going through absolute zero. Rather, one has to go
through infinite temperature.
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∫ T1

0

dT ′ CX(X,T ′)

T ′ = S(X1, T )− S(X2, T ) = 0

since the process was adiabatic, and hence reversible. However, note that CX(T ̸= 0, X) is strictly positive,
so the integral itself can never be zero, forcing a contradiction! Thus, we conclude that there is no such process
which exists to cool a system to absolute zero in a reversible fashion, and hence there cannot be any irreversible
process which does so either (since the entropy change will never be zero for such a situation).

5 Open Systems

Up until this point, we have been studying relatively simple systems consisting of a single species typically
contained in an isolated environment. In our consideration of the Helmholtz free energy, we also coupled the
system to a heat reservoir to allow a specification of constant temperature instead. We now want to go one step
further, bringing thermodynamics into the realm of chemical physics where most experiments are conducted
at constant temperature and constant pressure. For this, we will see that the Gibbs free energy is the ideal
thermodynamic potential.

5.1 Chemical Potentials for Gases

The chemical potential µ represents the energy required to introduce a single particle into the system, with no
heat exchange or work done. Mathematically, this is written as:

µ = µ(S, V,N) =

(
∂E

∂N

)
S,V

where S is constant to prevent heat exchange and V is constant to prevent work. Since it is rather difficult
to keep both of these extensive quantities constant in a real experiment, it is favourable to instead doubly
Legendre transform the energy into the Gibbs free energy to obtain:

µ = µ(T, p,N) =

(
∂G

∂N

)
T,p

(5.1)

In a real experiment, the temperature and pressure of the system may change over the course of an ex-
perimental run, but it is really just the initial and final values that matter since the Gibbs free energy is a state
variable. The above definition now hints to us that the chemical potential in the natural variables (T, p,N)

somehow represents the Gibbs free energy per particle in the system, and we can formalise this mathemati-
cally. We start by writing the defining extensive relation for the Gibbs free energy:

G(T, p, λN) = λG(T, p,N)

Differentiating this with respect to λ, we get:

d

dλ
G(T, p, λN) = G(T, p,N)

We then apply the chain rule to the left, and finally set λ = 1 to obtain:(
∂G

∂N

)
T,p

N = G(T, p,N) =⇒ µ(T, p) =
1

N
G(T, p,N)

where the natural variables of µ are now only the temperature T and pressure p. This is a result of the
extensivity of G(T, p,N), combined with the fact that µ in these variables is obtained by simply dividing the
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Gibbs free energy by N , implying that it cannot possibly contain any N dependence, otherwise it would no
longer be intensive. We thus have a formal definition of the chemical potential in the Gibbs potential, where
it is interpreted as the Gibbs free energy per particle at constant temperature and pressure. We can check
this value for the ideal gas using its equation of state. We start with the fundamental relation in the Gibbs
representation from Eq. 3.24, and divide through by N then set dN = 0 to write the Gibbs free energy per
particle g, in terms of the entropy per particle s and volume per particle v (using lowercase variables):

dg = −sdT + v dp =⇒ dg = −sdT +
kBT

p
dp

where we use the ideal gas equation of state. Integrating with respect to both variables gives:

g(T, p) = kBT log

(
p

p0

)
+ f(T )

where f(T ) is some unknown function of the temperature. We now use the fact that g(T, p) ≡ µ(T, p) to
conclude that:

µ(T, p) = kBT log

(
p

p0

)
+ f(T ) (5.2)

In this expression, one can only determine the exact expression if f(T ) is known through integration of
the entropy per particle s(T, p)25.

5.2 Chemical Reactions

In moving to our study of chemical physics, we must start considering systems with multiple species of parti-
cles. Suppose we have s species present in our system, then the fundamental relation in the Gibbs representa-
tion is:

G = G(T, p, {Nj}) =⇒ dG = −S dT + V dp+

s∑
j=1

µj dNj (5.3)

with the natural variables as (T, p,N1, · · · , Ns), which suggests that we should write the chemical poten-
tials as µj(T, p,N1, · · · , Ns), using two intensive variables and s extensive variables. We can instead convert
this representation into entirely intensive parameters, which will then require one less dependency (as we es-
tablished earlier with the Gibbs–Duhem relation). We define the concentration with respect to the s-th species
as cj ≡ Nj/Ns as a set of (s − 1) intensive parameters, where there is one less concentration than there are
species since the last concentration is trivially unity. Thus, we obtain the chemical potential as a function of
(s+ 1) intensive parameters: µ(T, p, c1, · · · , cs−1). Now, in a general chemical reaction, we have some process:

ν1A1 + ν2A2 + · · ·+ νpAp ⇌ νp+1Ap+1 + · · ·+ νsAs

where we have p reactants (on the left), q products (on the right) and the relation p + q = s. The species
involved in the reaction are labelled by the set {Aj}, while their coefficients {νj} specify the relative number

25Once we incorporate this with statistical mechanics, this is easily seen to be possible since the Sackur-Tetrode equation gives us the
entropy of an ideal gas in terms of the natural extensive variables. Using the equations of state for T and p, this can be easily converted to
give s(T, p) which is then integrated to obtain the functional form of f(T ). Realistically, one would have a far easier time just looking up
these functions in a table of standard Gibbs free energies.
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of particles per reaction, also known as the stoichiometric coefficients of the reaction. As an example, we con-
sider the following reaction for the production of ammonia, commonly known as the Haber–Bosch process26:

N2 + 3H2 ⇌ 2NH3

In this reaction, we have {Aj} = {N2,H2,NH3}, {νj} = {−1,−3, 2}, p = 2, q = 1 and s = 3. Notice that
ν < 0 for reactants while ν > 0 for products, indicating that reactants vanish while products appear in the
course of the forward reaction. Thus, we can denote any general chemical reaction simply by:

s∑
j=1

νjAj = 0 (5.4)

In chemistry, equilibrium is typically considered to be measured at constant temperature and pressure,
since reactions are most commonly carried out in an open environment. We thus start with the total differential
for the Gibbs free energy (assuming constant T and p):

dG =

s∑
j=1

µj dNj = 0

where we set the differential to zero since the Gibbs free energy is minimised at equilibrium. Now, from
Eq. 5.4 we note that the change in the particle number of the j-th species is directly proportional to νj , and
this proportionality factor is simply the number of chemical reactions which took place in the system. We then
denote the number of chemical reactions by Ñ to write:

dG =

s∑
j=1

µj dNj

= dÑ

s∑
j=1

µjνj = 0

We can finally set the sum of this product to zero since dÑ is arbitrary, giving us the condition for chemical
equilibrium.

Definition 5.1: Condition for Chemical Equilibrium

Given a chemical reaction
∑s

j=1 νjAj = 0 where {Aj} are the various particle species present (either
reactants or products), the chemical potentials at equilibrium must satisfy:

s∑
j=1

µjνj = 0 (5.5)

where µj is the chemical potential of the j-th species and νj is its corresponding stoichiometric coeffi-
cient. The stoichiometric coefficients are positive for products and negative for reactants.

26German chemists Fritz Haber and Carl Bosch received the Nobel Prize in Chemistry in 1918 for this work. It is arguably one of the
most important industrialised chemical processes used today, responsible for the production of ammonia used in fertilisers and industrial
feedstock for most of the world. While this work is highly respectable, I personally believe it should also be noted that immediately after
development of this process, Haber spent the next several years leading up to and at the start of World War I developing methods for
extracting large quantities of chlorine gas for use in trench warfare. He recruited large numbers of chemists and physicists, including the
future Nobel laureates Otto Hahn, James Franck and Gustav Hertz, and led a team dedicated to the development of chemical weaponry.
His work was posthumously used to also develop Zyklon B, the notorious chemical weapon of choice in the gas chambers during the
Holocaust. For these reasons, Fritz Haber is dubbed the “father of chemical warfare”.
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This is the general requirement for chemical equilibrium in a multi-species reaction, and provides a con-
straint amongst all the intensive chemical potentials at equilibrium27.

5.2.1 Reactions in an Ideal Gas

We can study the idea of chemical equilibrium in a reversible reaction more specifically under the assumption
that the reactants and products are ideal gases. While this is never true in reality, the result obtained here is an
excellent approximation to the true observed behaviour since equations of state for actual reactants and prod-
ucts are typically of the form f(p, V, T ) = 0. We first define the partial pressure pj as the pressure produced
by the j-th species if all other species’ particles were removed, and the j-th species occupied the full volume
of the container. Mathematically, we define it as:

pj =
Nj

N
p =⇒ pjV = NjkBT (5.6)

We now take the chemical potential of an ideal gas from Eq. 5.2 and invoke the equilibrium condition from
Eq. 5.5 to write:

s∑
j=1

νjkBT log pj = −
s∑

j=1

νjfj(T )

kBT log

 s∏
j=1

p
νj

j

 = −
s∑

j=1

νjfj(T )

where in the first line, the reference pressure p0 is no longer necessary since this role is fulfiled by the total
pressure p.

Definition 5.2: Law of Mass Action

At chemical equilibrium, the reactants and products in a system satisfy the law of mass action:

s∏
j=1

p
νj

j = exp

− 1

kBT

s∑
j=1

νjfj(T )

 ≡ Kp(T ) =
kf
kb

(5.7)

This determines the partial pressure of each species at equilibrium. The quantity Kp(T ) is commonly
known in chemistry as the equilibrium constant of a reaction, and is typically something that can be
looked up in a table. The final ratio kf/kb expresses the equilibrium constant as a ratio of rate constants,
where kf is known as the forward reaction rate constant, while kb is the backward reaction rate constant.
These rate constants determine the speed at which the forward and backward reactions occur, and they
proceed in a manner at equilibrium which leaves the partial pressures unchanged.

More commonly the equilibrium constant is specified in terms of the standard Gibbs free energy of
reaction ∆GΘ, defined as:

∆GΘ = −kBT logKp(T )
!
=

s∑
j=1

νjfj(T ) (5.8)

27This condition is not satisfied when the system is out of equilibrium, since an imbalance in chemical potentials is required for particles
to leave one state and enter another.
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where the second equality is only true for an ideal gas reaction. The superscript Θ here refers to the fact
that this is defined at some standard temperature and pressure, typically taken to be 298.15K and 100 kPa

(or 1 atm = 101.325 kPa in IUPAC-standardised references before 1982, or NIST references today). We can
similarly formulate the law of mass action in terms of species concentration (for aqueous reactions) by defining
a species concentration cj ≡ Nj/V = pj/kBT . This gives:

s∏
j=1

c
νj

j = (kBT )
−

∑
j νj exp

− 1

kBT

s∑
j=1

νjfj(T )

 ≡ Kc(T ) (5.9)

where the equilibrium constant must be modified. To demonstrate how this enables a reaction to occur,
we consider a product of concentrations such that

∏s
j=1 p

νj

j < Kp(T ), so the system is not in equilibrium. This
implies that an excess of the reactants exists (since the denominator is larger than its equilibrium value), and
a deficiency of the products. The chemical potentials of the products then become negative, while those of
the reactants remain positive (as seen from Eq. 5.2 with p0 = peq), favouring the process in while particles are
removed from the reactant state and added to the product state (i.e. the forward reaction). This continues
until equilibrium is re-established, at which point we achieve

∏s
j=1 p

νj

j = Kp(T ). This is an example of what
you may have seen in high school as Le Chatelier’s principle, whereby the system acts in a way such that
the suitable reaction is favoured to re-establish equilibrium! In our thermodynamic picture, this process of
re-equilibration following a perturbation is no magic, it is simply the act of the system minimising its Gibbs
free energy!

5.3 The Heat of Reaction

We have just established a physical mechanism through which chemical reactions occur, and how they even-
tually reach chemical equilibrium while remaining robust to perturbations in the constituent particle numbers.
The equilibrium constant Kp(T ) was also written as a function of the temperature, and this suggests that the
chemical equilibrium state itself is temperature-dependent. To study this, we first consider the derivative:

∂

∂T

(
G

T

)
p,N

=
1

T 2

[
T

(
∂G

∂T

)
p,N

−G

]

=
1

T 2
(−TS −G)

= − H

T 2

where H is the enthalpy of the system. This gives us the following relation:

Definition 5.3: Heat of Reaction and the Gibbs–Helmholtz Equation

The enthalpy of a reaction is related to the change in Gibbs free energy of the system undergoing the
reaction by the Gibbs–Helmholtz equation:

∆H = −T 2 ∂

∂T

(
∆G

T

)
p,N

≡ Qp (5.10)

This change in enthalpy is also commonly known as the heat of reaction Qp, and is equal to the amount
of heat released or absorbed in breaking and forming the chemical bonds as a result of the underlying
forward and backward reactions.
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We now return to the change in Gibbs free energy for a system undergoing a chemical reaction, and set
dÑ = 1 to write:

∆G =
∑
j=1

µjνj

= kBT
∑
j=1

νj log pj − kBT logKp(T )

Finally, we insert this expression into the Gibbs–Helmholtz equation, noticing that the derivative kills the
first term, leaving us with:

Definition 5.4: The Van t’ Hoff Equation

Van t’ Hoff’s equation relates the change in the equilibrium constant Kp(T ) of a reaction to a change in
the temperature T of the system, given the enthalpy of reaction ∆H .

∆H = kBT
2 d

dT
logKp(T ) (5.11)

Van t’ Hoff’s equation is powerful in formulating a physical picture of chemical reactions, in that it tells
us which way a reaction proceeds when the temperature of the system is changed, since the reaction always
proceeds in a manner to counteract the addition or removal of heat to a system in order to minimise its Gibbs
free energy (and enthalpy). As an explicit demonstration, we consider a system with positive heat of reaction
(Qp > 0), so we have an endothermic reaction. Increasing the temperature then requires that Kp(T ) increase as
well, since logKp(T ) is a monotonically increasing function of T . Then, from the expression for the equilibrium
constant we see Kp(T ) =

∏
j p

νj

j demands that the forward reaction should proceed to absorb this heat. This
is yet another demonstration of Le Chatelier’s principle, now for the case of a change in temperature!

6 Phases

In the previous sections, we had studied systems of increasing complexity, most recently relaxing the restric-
tion of particle conservation. We now proceed one step further by introducing systems with several co-existing
phases, alongside the possibility of more than one particle species. We define a phase to be some homogeneous
part of a system that is separated via a boundary from other parts of the system (other phases). Phase tran-
sitions occur when the system changes from one phase to another at some suitable values of the system’s
parameters. Furthermore, we can treat each phase as an open subsystem of the whole, exchanging particles
with its neighbouring subsystems in state space. First, we should get some mathematical notation introduced
to deal with the phases. We denote the particle numbers of a multi-species multi-phase system by {N (k)

j },
where j denotes the species and k denotes the phase. The fundamental relation in energy representation is
then written as:

dE = T dS +

r∑
i=1

Fi dxi +

s∑
j=1

t∑
k=1

µ
(k)
j dN

(k)
j (6.1)

We now have (1 + r+ st) independent extensive variables, paired with corresponding intensive variables
(we will re-formulate the dependency of intensive variables for multi-phase systems later). Performing a
Legendre transformation, we end up with the Gibbs free energy as usual:
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dG = −S dT −
r∑

i=1

xi dFi +

s∑
j=1

t∑
k=1

µ
(k)
j dN

(k)
j (6.2)

which is still equally valid in the multi-phase context as long as we are keeping p and T constant (in the
special case of r = 1). For this section, we will assume that each species is chemically inactive, with no ability
to transmute amongst each other. We can then treat each phase within a species as an independent species,
allowing us to write the Gibbs free energy of the total system (using the Euler equation) as:

G(T, {Fi}, {Nj}) =
s∑

j=1

t∑
k=1

µ
(k)
j N

(k)
j

Note that the chemical potential here is now a function of the natural variables:

µ
(k)
j = µ

(k)
j (T, {Fi}, N (k)

1 , · · · , N (k)
s−1, N

(k)
s )

Now, we use the same trick as before to turn the st extensive particle numbers into (st − 1) intensive
concentrations by dividing each particle number by N

(k)
j , giving us the chemical potentials as:

µ
(k)
j = µ

(k)
j (T, {Fi}, c(k)1 , · · · , c(k)s−1) (6.3)

6.1 Equilibrium Conditions for Multi-Phase Systems

The conditions of thermodynamic equilibrium set out in Def. 0.1 dictate how the intensive variables between
two systems in contact must be equal. We later used this idea to develop the principle of Gibbs free energy
minimisation. Now, with different phases in play, we need to re-develop the argument once more. At constant
temperature and pressure, the first differential of the Gibbs free energy is:

dG =

s∑
j=1

t∑
k=1

µ
(k)
j dN

(k)
j = 0

Maintaining the assumption that the system’s species are chemically inactive, we can denote the particles
in the j-th species undergoing a phase transition k → l as dN (k→l)

j . Then, the total change in the k-th phase is:

dN
(k)
j =

t∑
l=1

dN
(k→l)
j = −

t∑
l=1

dN
(l→k)
j

with the obvious imposition that dN (k→k)
j = 0. At equilibrium, we then obtain:

s∑
j=1

t∑
k=1

t∑
l=1

µ
(k)
j dN

(k→l)
j = 0

where we sum over all s species, all t initial phases and t final phases. Since this sum vanishes, we can
simply add a copy of it with no consequence:

s∑
j=1

t∑
k=1

t∑
l=1

µ
(k)
j dN

(k→l)
j +

s∑
j=1

t∑
k=1

t∑
l=1

µ
(l)
j dN

(l→k)
j = 0

where I have renamed the dummy variables k ←→ l in the second term. Finally, we flip the direction of
phase transfer in the second term to arrive at:
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s∑
j=1

t∑
k=1

t∑
l=1

(
µ
(k)
j − µ

(l)
j

)
dN

(k→l)
j = 0

Since this is true for any arbitrary set of {dN (k→l)
j }, the factor in parentheses must vanish. This leads us to

the conclusion that µ(k)
j = µ

(l)
j , for all pairs of phases (k, l) within each species j. This confirms our intuition

that the chemical potential across all phases is equal at equilibrium. In a similar fashion, it can be shown that
the temperatures and other intensive quantities must also be equal.

6.2 The Thermodynamic Stability Criterion

With extremal principles in place for the derivative of the thermodynamic potentials with respect to the exten-
sive variables, we know what to expect in terms of the behaviour of these potentials as the system is perturbed
slightly from its equilibrium point. Let us now extend this discussion by studying the conditions that must
be obeyed by a system in a stable thermodynamic equilibrium. Knowing that a thermodynamic system con-
tains an incredibly large number of particles (N ≳ 1023), it is unavoidable that fluctuations will occur. These
fluctuations refer to small deviations in the actual values of the characterising macroscopic parameters that
we have used in specifying an equilibrium state (such as E, S, V , etc.). Stability here then refers to the idea
that a system subject to these perturbing fluctuations will return to the equilibrium state, and not allow for un-
bounded growth of these microscopic fluctuations, destroying the equilibrium. These unbounded fluctuations
are often seen in the vicinity of a phase transition, where the system macroscopically exhibits a marked change
in behaviour.

For a system partitioned into two subsystems that are in thermodynamic equilibrium with one another,
we have already established that the extensive variables add while the intensive variables are the same for
each subsystem. The principle of energy minimisation then tells us that a small fluctuation in the entropy
δSA = −δSB in the subsystems must necessarily increase the internal energy of the total system: δE > 0. We
formalise this by expanding such fluctuations to second order:

(δE)S,V,N = EA(SA + δSA, VA, NA)− EA(SA, VA, NA)

+ EB(SB + δSB , VB , NB)− EB(SB , VB , NB)

=

(
∂EA

∂SA

)
VA,NA

δSA +

(
∂EB

∂SB

)
VB ,NB

δSB

+
1

2

(
∂2EA

∂S2
A

)
VA,NA

(δSA)
2
+

1

2

(
∂2EB

∂S2
B

)
VB ,NB

(δSB)
2
+O(δS3

A)

> 0

The energy minimisation principle ensures that the two first derivatives cancel each other out, so we must
have the second derivatives obeying:

0 <
1

2

(
∂2EA

∂S2
A

)
VA,NA

(δSA)
2
+

1

2

(
∂2EB

∂S2
B

)
VB ,NB

(δSB)
2

=
1

2

(
∂TA

∂SA

)
VA,NA

(δSA)
2
+

1

2

(
∂TB

∂SB

)
VB ,NB

(δSB)
2

Since the partitioning is arbitrary, it follows that:
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(
∂T

∂S

)
V,N

> 0 (6.4)

This is a necessary condition for stable thermal equilibrium. If this is not satisfied, certain small fluc-
tuations of the entropy would decrease the internal energy of the system, spontaneously bringing it into a
state with lower energy. This identifies the previous state of the system as an unstable equilibrium. From the
definition of the heat capacity in Eq. 2.18, it is then easy to see that:

CV = T

(
∂S

∂T

)
V,N

> 0 (6.5)

Thus, the constant volume heat capacity of a system is strictly positive in a stable system at thermal equi-
librium. Negative heat capacities would allow heat to spontaneously flow from the colder part of a system to
a hotter part, increasing the internal temperature differential and moving it further from equilibrium. Clearly,
the requirement for thermodynamic stability has profound implications on the response functions of a system,
so we should explicitly look at how the others would also behave. Considering now fluctuations in the volume
of a subsystem and applying the same reasoning as above leads us to the conclusion that:(

∂2E

∂V 2

)
S,N

= −
(

∂p

∂V

)
S,N

> 0 (6.6)

From the definition of the compressibility in Eq. 1.7, we see that the adiabatic compressibility κS must
obey:

κS = − 1

V

(
∂V

∂p

)
S,N

> 0 (6.7)

Intuitively, this makes sense since placing additional pressure on a system should decrease its volume
instead of increasing it. If the opposite were true, the system would expand without bound until its volume
eventually becomes comparable to that of the reservoir, possibly leading to an explosion. The adiabatic com-
pressibility is only useful in situations where volume changes can be performed quickly, so we should instead
aim to make a similar statement about the isothermal compressibility κT , where the system is held at a con-
stant temperature. This requires us to instead work with the Helmholtz free energy since its natural variables
are (T, V,N). Fluctuations in the volume of a system then lead to second-order changes in the Helmholtz free
energy given by:

0 < (δF )T,V,N =
1

2

(
∂2FA

∂V 2
A

)
TA,NA

(δVA)
2
+

1

2

(
∂2FB

∂V 2
B

)
TB ,NB

(δVB)
2

This gives us the requirement that:(
∂2F

∂V 2

)
T,N

= −
(

∂p

∂V

)
T,N

> 0 =⇒ κT > 0 (6.8)

as expected. Interestingly, one can also show that this leads to the requirement that the constant pressure
heat capacity Cp > 0 (try it yourself; use the definition of the heat capacities and the triple product rule).
Knowing that the heat capacity difference obeys Cp −CV > 0, we are also able to conclude that κT > κS . That
is, it is easier to compress a system coupled to a heat reservoir than one that is thermally isolated.
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6.3 Gibbs’ Phase Rule

Let’s now return to the simpler situation where r = 1 and consider a gaseous system with mechanical work
only in the form of (−p dV ). Such a system will have (2 + st) intensive variables (s species and t phases each),
not all of which are independent. Recalling that the chemical potentials can be written in terms of (s − 1)

intensive concentrations (Eq. 6.3) for each phase (when chemical inactivity is assumed), we know that we have
introduced one constraint from each phase k. Since there are t such phases, we have t constraints in the form
of concentrations which trivially give unity.

We also know that within each species, the chemical potentials for the phases must be equal at equilibrium.
Since we have (t − 1) such independent chemical potentials remaining for each species, we have a total of
s(t − 1) new constraints. Adding up the total number of constraints, we have D remaining independent
intensive variables given by28:

Definition 6.1: Gibbs’ Phase Rule

Gibbs phase rule dictates the number of independent intensive parameters D in a multi-species multi-
phase system, given by:

D = 2 + st− t− s(t− 1) = 2 + s− t (6.9)

for s chemically-inactive species spread amongst t phases per species. Demanding that D ≥ 0 (since
the number of degrees of freedom cannot be negative) tells us that for an s-species system, there can
maximally only be t simultaneously co-existing phases:

p ≤ 2 + s (6.10)

As a simple example, we consider a single-species system (s = 1) and observe that there are only a max-
imum of three co-existing phases allowed at any given point in the intensive parameter space. This gives us
the inequality:

D = 3− p ≥ 0

If only one phase (p = 1) exists in some region, we have D = 2 which tells us that there are two degrees of
freedom (p, T ) still available. This constitutes some general region in the intensive 2D state space that we can
denote as a single phase. If two phases (p = 2) coexist in some region, we have D = 1 which tells us that this
coexistence region has only one degree of freedom, and thus it must be a line in the intensive state space! This
line can be parametrised as p = p(T ), and is commonly known as a coexistence curve. Finally, if three phases
simultaneously coexist (p = 3), then D = 0 implies that this must be a single point in state space, known as
the triple point of the system! These are shown in Fig. 12 for greater clarity. A well-known case of a triple
point is that of water, found at 273.16K and 611.657Pa where ice, water and steam are all simultaneously in
coexistence. What makes a triple point so unique is that miniscule changes in p or T will quickly move the
system to a region containing only one phase, so it is a great temperature standard (if one knows the pressure
to great accuracy). For this reason, the SI base unit of Kelvin was defined as 1/273.16-th of the triple point of
water up until 2019, when it was redefined to use kB instead.

28Take as much time as you need to convince yourself of these counting arguments. This is an important point, and it should not be
covered hastily.

47



FIGURE 12: Gibbs’ Phase Rule in the Intensive State Space. In a (p, T ) state space for a single species (s = 1), the
maximal number of coexisting phases allowed at any point is p = 3. This sets a constraint on the number of degrees of
freedom D available to a region with p coexisting phases. Each individual phase (D = 2, p = 1) is a separately shaded
region, while coexistence curves (D = 1, p = 2) are drawn as black lines and the triple points (D = 0, p = 3) are marked
with black arrows.

FIGURE 13: Gibbs Surfaces in the In-
tensive State Space. By drawing Gibbs
surfaces corresponding to µ(k)(p, T ) above
the (p, T )-plane, we can determine their
curve of intersection to find the coexistence
curve. Furthermore, the dominant phase
observed in each region of the state space
is given by the lower of the two surfaces.

Now, let’s consider sitting on one of the coexistence curves
where two phases are simultaneously coexisting in equilibrium.
The (p, T ) values along the line must be such that µ(1)(p, T ) =

µ(2)(p, T ), where µ(k)(p, T ) is the chemical potential as a function
of temperature and pressure for the k-th phase in coexistence. If
we now evaluate µ(1)(p, T ) for a set of (p, T ) values in the re-
gion of phase 2 P(2), we would obtain µ(1)(p, T ) > µ(2)(p, T ).
Similarly, in the region of phase 1 we would have µ(1)(p, T ) <

µ(2)(p, T ). This is because the chemical potential in some region
is equal to the Gibbs free energy per particle, and since G is min-
imised at equilibrium, the phase with the smallest chemical po-
tential is the actual phase observed in a given region. A geo-
metric way to visualise the dominant phases is to draw surfaces
of µ(k)(p, T ) at some height µ above the (p, T )-plane, known as
Gibbs surfaces. The line of intersection between these planes
represents the coexistence curve, while the dominant phase in
each region is the phase with a lower value of µ(k)(p, T ). An il-
lustration of the Gibbs surfaces is provided in Fig. 13.

It should also be noted that this extrapolation of µ(k)(p, T )

beyond its region of dominance (i.e. past the coexistence curve)
is rather unphysical. In a real physical system, it is incredibly
difficult to drive the system across the coexistence curve while

maintaining the previous phase since microscopic fluctuations in the particle number of one phase will un-
boundedly grow until the system macroscopically transitions to the new phase. One may be able to do this in
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FIGURE 14: Critical Points in the Intensive State Space. In a (p, T ) state space for a single species (s = 1), the coexistence
curve bordering two phases can terminate at a critical point. In regions beyond the critical point, the distinction between
the two previously coexisting phases is blurred, and one can traverse the state space from one phase to the other without
ever undergoing a phase transition. In the above diagram, the liquid-gas coexistence curve terminates at a critical point,
beyond which the purple region is indeterminate in terms of its phase.

small vicinities of the coexistence curve, however, such as in the familiar examples of superheated water (wa-
ter existing above 100 ◦C without turning to steam) or supercooled water (water existing below 0 ◦C without
turning to ice). These are simply metastable states, and will rapidly undergo a phase transition when subject
to a modest perturbation.

The phase diagram of a realistic substance in typically accessible regimes of temperature and pressure29

is not as complicated as the one shown in Fig. 6.9, and usually just involves three phases meeting at a triple
point. However, real coexistence curves typically have an end beyond which they terminate. This point of
termination is known as a critical point, and is illustrated in Fig. 14. Geometrically, coexistence curves lie
on a cusp of the minimal Gibbs surface (the lower branch), but this cusp can eventually end. The upper and
lower branches of the Gibbs surface beyond a critical point can no longer be distinguished from one another,
having an appearance that looks similar to a multi-valued function in complex analysis. In this manner, one
can traverse the state space going from one phase to another around a critical point, never having to undergo
a phase transition by crossing the coexistence curve30. We thus have to be careful about assigning a definite
phase to regions of the intensive state space far from a coexistence curve.

6.4 The Clausius–Clapeyron Equation

To better understand the phase diagram, we should be able to exactly determine the equations of the coex-
istence curves that separate the various phases. We can do so by first considering the defining relation for a

29Look up the real phase diagram of water and you’ll be surprised how incredibly complicated it is. There are six triple points and
countless coexistence curves. Most of them are a result of ice having a highly nontrivial set of behaviours at higher pressures, with
roughly 12 phases (that I am aware of).

30Here’s an analogous situation — it is meaningful to say that Pennsylvania lies on the left of the Delaware River, while New Jersey lies
on the right. It is not meaningful to say the same of Montreal or Paris, since the river terminates at some point in the continental USA. One
could hop on a flight from Newark to Paris, then Paris to Montreal, and finally Montreal to Philadelphia, without having ever crossed the
Delaware River (or cheating by going around the International Date Line).
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coexistence curve (still assuming s = 1):

µ(1)(p, T ) = µ(2)(p, T )

Now, we consider two infinitesimally separated points on the curve. These should satisfy:µ(1)(p, T ) = µ(2)(p, T )

µ(1)(p+ dp, T + dT ) = µ(2)(p+ dp, T + dT )
=⇒ dµ(1) = dµ(2)

where we subtract the two equations to obtain the differential relation between the chemical potentials.
Since the chemical potential is typically harder to work with, we want to convert this to the other intensive
variables defining the state space. We use the Gibbs–Duhem relation to write:

dµ = − S

N
dT +

V

N
dp

Now, we apply the differential relation between the chemical potentials to obtain a differential relation
between the temperatures and pressures as:

− S(1)

N (1)
dT (1) +

V (1)

N (1)
dp(1) = − S(2)

N (2)
dT (2) +

V (2)

N (2)
dp(2)

However, we know that along the curve the temperatures and pressures must change equally for both
phases, so we can drop the superscripts on the differentials and group them. This leads us to write an equation
for the derivative of the curve in (p, T )-space as:

dp

dT
=
− S(2)

N(2) − S(1)

N(1)

V (2)

N(2) − V (1)

N(1)

=
∆
(
S
N

)
∆
(
V
N

) =
∆s

∆v

This finally leads us to the Clausius–Clapeyron equation:

Definition 6.2: Clausius–Clapeyron Equation

The coexistence curve between two phases in (p, T )-space is obtained by solving the differential equa-
tion:

dp

dT
=

∆s

∆v
=

L1→2

T (V (2) − V (1))
(6.11)

where L1→2 is known as the latent heat of transformation in going from phase 1 to phase 2, and is sim-
ply the heat involved in the entropy change when undergoing the phase transition. This is known as the
Clausius–Clapeyron equation, and it details the slope of the coexistence curve for some transformation
at any particular point along the curve in (p, T )-space.

Physically, the form of the Clausius–Clapeyron equation tells us why the melting-freezing coexistence
curve is steeper than the condensation-vaporisation curve, since the volume change in the melting process is
much smaller than that of the vaporisation process. The latent heat involved in breaking the bonds of a solid
is also far greater than that of the bonds in a liquid phase, contributing to the steeper slope of the melting
curve. In H2O, this effect is exacerbated by the fact that the O−H bond lengths decrease upon melting, leading
to a contraction of the fluid. This makes the slope of the melting curve negative, known as the anomalous
behaviour of water at the melting transition.
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We can also consider the vaporisation curve in going from the liquid to gas phase. This curve has a strictly
positive slope, since the volume change in vaporisation is always positive. If we now assume that V (2) ≫ V (1),
that the latent heat of transformation is constant in a small finite region, and that the vapour behaves as an
ideal gas, we can use the ideal gas equation on the gaseous side of the phase transition to obtain an explicit
equation for the curve. Invoking the first assumption (V (2) ≫ V (1)) gives:

dp

dT
=

L1→2

T (V (2) − V (1))
≈ L1→2

TV (2)

Using the ideal gas equation of state then easily turns this into:

dp

dT
=

pL1→2

kBT 2

This is integrated to give the liquid-gas coexistence curve as:

p(T ) = p0 exp

(
−L1→2

kBT

)
(6.12)

which is typically valid for any gas phase that behaves like an ideal gas (negligible intermolecular inter-
actions upon vaporisation). The latent heat of transformation can be easily looked up in a table of values.

6.5 Phase Transitions and the Maxwell Construction

In studying the various phases of a system and their coexistence regions thusfar, we have worked in a purely
intensive state space of pressure p and temperature T . Previously, however, we have been used to working
in the space of (p, V ), so it would be wise to revert back to that picture. For this, we first recognise that the
volume V can be converted to an intensive variable v = V/N known as the specific volume31. We then plot an
isotherm in p − v space, for some temperature T that cuts through the coexistence curve (T < Tc, where Tc is
the temperature at the critical point) as shown in Fig. 15.

Here, (p(T ), T ) is a point on the coexistence curve at some temperature T for which we draw the isotherm.
The specific volumes v(1) and v(2) are the specific volumes of the two phases just at the edge of the coexistence
region. Within each well-defined phase, the isotherm is continuous and has negative slope as dictated by the
thermodynamic stability criterion in Eq. 6.7. We identify phase 1 with the gaseous phase and phase 2 with the
liquid phase, since we expect the specific volume of the gaseous phase to be larger. Now, if we initially have
some large specific volume v > v(1)(T ) and reduce v isothermally (through contact with a large heat reservoir),
the pressure will increase until we hit v(1)(T ). Further reducing the volume at this point will not change the
pressure, since all work done on the system goes directly into the latent heat of the transformation process.
This continues until all the gas has condensed at which point we have the specific volume v(2)(T ). Further
volume reduction from here will return the standard behaviour of increasing the pressure.

While the Clausius–Clapeyron equation provides us with the parametrisation of the coexistence curve
in (p, T )-space, it leaves us to deduce the specific volumes v(1)(T ) and v(2)(T ) ourselves. That is, we still
need to determine the specific volumes at which the onset of coexistence occur when approaching the co-
existence curve from either phase along an isotherm. Since the isotherm corresponds to a constant T (and
constant N ) process, we can write the pressure in (p, V )-space as a derivative of the Helmholtz free energy:
p = −(∂F/∂V )T,N . Notice that we can also remove the number dependence by switching to the intensive
quantities:

31The specific volume is typically defined as v = V/n, where n is the number of moles of the gas present. We recognise that our
definition in this review is simply related to this traditional definition by a factor of Avogadro’s constant NA.
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FIGURE 15: Coexistence Region Between Two Phases in p − v Space. An isotherm occurring within a region passing
through a coexistence curve in the p−T space will exhibit a sudden jump in p−v space. The discontinuity in the derivative
of the isotherm represents the region where the temperature and pressure remain constant (on the coexistence curve) while
all heat supplied to the system is used in enacting the phase transformation. This is represented by the shaded area, equal
to the latent heat of transformation L2→1. In the region of coexistence, it is impossible to say for certain what phase the
system is in, as it is almost always in a mixture of the two phases found on either side of the coexistence curve.

F (T, V,N) = NF

(
T,

V

N
, 1

)
= Nf(T, v)

where f(T, v) is the Helmholtz free energy per particle. Through this, we can write the pressure as:

p = −
(
∂F

∂V

)
T,N

= −
(
∂f

∂v

)
T

= p(T, v)

Demanding that the pressures and chemical potentials (intersection of Gibbs surfaces) of the two phases
on either side of the coexistence curve must be equal along the curve, we can write the set of equations:

(
∂f (1)

∂v

)
T

∣∣∣∣
v=v(1)

=

(
∂f (2)

∂v

)
T

∣∣∣∣
v=v(2)

(6.13)

µ(1)(T, v(1)) = µ(2)(T, v(2)) (6.14)

where f (k)(T, v(k)) is the Helmholtz free energy per particle of the k-th phase at coexistence. The si-
multaneous solution of these equations for v(1)(T ) and v(2)(T ) gives us the specific volumes between which
coexistence occurs for a given temperature T . At this stage, this sounds rather abstract, so let’s try to unpack
this more visually. Suppose we have the free energies for the two separate phases as functions f (1)(T, v(1)) and
f (2)(T, v(2)). While in coexistence, Eq. 6.13 demands that the slope of f (1) at v(1) is equal to the slope of f (2) at
v(2), as shown in Fig. 16.

Visually, we can see that the common tangent allows us to write:

f (2)(T, v(2))− f (1)(T, v(1)) = −p(T )
(
v(2) − v(1)

)
Equivalently, we can group the terms for each phase to obtain:
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FIGURE 16: Common Tangent in Coexistence for Two Phases in f − v Space. The coexistence region for two phases in
the (f, v) space is determined by constructing a common tangent between the two free energy curves for the two phases.
The equality of the slopes is imposed by Eq. 6.13.

(f + pv)(1) = (f + pv)(2)

Considering the Euler equation for the Gibbs free energy (or simply its definition as the Legendre trans-
formation of the Helmholtz free energy on the (p, V ) conjugate variable pair), we see that this condition is
identical to Eq. 6.14, which sets the chemical potentials at coexistence to be the same! This confirms that the
construction of the common tangent between the two phases’ Helmholtz free energy curves is consistent with
the condition of coexistence. Interestingly, the chemical potential is just the y-intercept of the common tangent,
which can be easily seen considering the functional form of the tangent line (when viewed in the standard
form of the expression for a straight line y = mx + c). The free energy in the coexistence region is then given
by:

f(T, v) = f (1)(T, v(1))
v − v(2)

v(1) − v(2)
+ f (2)(T, v(2))

v(1) − v

v(1) − v(2)
(6.15)

where one should pay attention to the signs in the numerators. This is simply a convex sum of the two
respective free energies on either side of coexistence, with the fractions given by the molar fraction of each
phase. It is trivial to confirm that these molar fractions add to unity as one would expect.

When dealing with real systems, we will frequently run into situations where there is no known phase
transition beforehand. Rather, we will have some expression for the equation of state or thermodynamic
potential (such as the Helmholtz free energy) and we may want to make some predictions about the existence
(or lack thereof) of a phase transition. In such situations, we may encounter a Helmholtz free energy that looks
like that shown in Fig. 17.

In this diagram, we observe that the isotherm has the wrong sign in the range of v between v(1)(T ) and
v(2)(T ). Specifically, we have: (

∂2f

∂v2

)
T

< 0 ⇐⇒
(
∂p

∂v

)
> 0

which violates the thermodynamic stability criterion set out in Eq. 6.7. We rectify this by constructing
the tangent between those two specific volumes, and this tangent now predicts the Helmholtz free energy in
that range instead of the original equation of state. These are, once again, determined by solving the set of
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FIGURE 17: Instability in the Helmholtz Free Energy. In studying an unknown system, we may encounter an equation
of state that produces a Helmholtz free energy which looks like this. In the region between v(1)(T ) and v(2)(T ), notice how
the Helmholtz free energy is convex instead of concave. This suggests that the system as predicted by the equation of state
is thermodynamically unstable in said region, and is likely to be undergoing a phase transition.

equations Eq. 6.13 and 6.14 for v(1)(T ) and v(2)(T ), with p(T ) providing the slope of the curve and µ providing
the y-intercept.

Similarly, the thermodynamic instability can be seen on the p − v diagram in Fig. 18 where it presents
itself as a region in which the isothermal p(T, v) curve is increasing instead of decreasing. We note that the
construction of the common tangent in Fig. 17 demands that the free energy changes linearly with specific
volume. This implies that the pressure must be a constant over the same region. Setting the pressure to
a constant p(T ) in the region between v(1)(T ) and v(2)(T ) essentially truncates two curved shaded regions
(sometimes called the unphysical oscillations of the equation of state). This procedure is known as a Maxwell
construction32, where the pressure p(T ) is set such that the areas of the shaded regions above and below the
line of constant pressure is equal. The physical justification for this is that the work done by compressing the
gas through some specific volume should still be correct as predicted by the equation of state, since instability
only predicts a change in phase but not a change in the internal energy of the substance. We thus require the
following mathematical relation is obeyed:

(
v(1) − v(2)

)
p(T ) = f(T, v(2))− f(T, v(1))

=

∫ v(1)

v(2)

dv

(
−∂f

∂v

)
T

(6.16)

The left hand side is simply the area under the rectangle defined by the boundaries p(T ), v(2) < v < v(1)

on the p− v diagram. The right hand side is the area under the graph of the p− v diagram in the same region
of specific volume. These two terms are equal when the shaded areas are exactly equal. This condition for the
Maxwell construction thus sets a sufficient number of constraints that enables us to determine the coexistence
region from the equation of state alone.

32It turns out that Gibbs also had a very similar construction, but he had yet to publicly speak of it in the same way that Maxwell did.
He did, however, credit Gibbs with his construction when giving his first lecture on the subject of studying phase transitions in gaseous
systems.
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FIGURE 18: Maxwell Construction for an Isotherm with a Phase Transition. In studying an unknown system, we may
encounter an equation of state that produces a Helmholtz free energy which looks like this. In the region between v(1)(T )

and v(2)(T ), notice how the Helmholtz free energy is convex instead of concave. This suggests that the system as predicted
by the equation of state is thermodynamically unstable in said region, and is likely to be undergoing a phase transition.

6.6 The van der Waals Gas

As a final demonstration, let’s apply what we have just learnt about phase transitions to the van der Waals
gas. This is an approximate model for a real gas, with the equation of state:

(
p+

a

v2

)
(v − b) = RT with a, b > 0 (6.17)

where we use the molar gas constant R instead of the Boltzmann constant kB since this is how Johannes
Diderik van der Waals first presented it33. The equation is also written in purely intensive form, using the
intensive specific volume v instead of the extensive volume V . This differs from our familiar ideal gas equation
in two ways:

1. Accounting for the finite volume occupied by the constituent particles of a gas by ensuring that the
minimal specific volume is b > 0.

2. Phenomenological introduction of the “kinetic pressure” av−2 to account for the resistance of molecules
against externally applied pressure.

While the ideal gas equation of state predicts a gaseous state for the entire parameter space (since ∂p/∂v <

0 everywhere) and hence no phase transitions, these two simple modifications add such great richness to the
model of a real gas that it now exhibits a phase transition. This is easily shown by proving that there exists
some region of the intensive state space in which the derivatives disobey the thermodynamic stability criterion.
To demonstrate this, we first consider the derivatives of the equation of state in the more tractable form:

p(T, v) =
RT

v − b
− a

v2
(6.18)

We know that a coexistence region exists for some range of v when we are within a suitable region of the
(p, T ) phase diagram. Specifically, for T > Tc all the isotherms are stable over all v, while they start exhibiting

33van der Waals received the Nobel Prize in Physics in 1910 for this work, amongst other developments in studying equations of state
for fluid systems. This was also primarily the work which he conducted for his doctoral thesis entitled O ver de continuiteit van den gas- en
vloeistofiocstand Academisch proefschrift. I miss the days when people won Nobels for their doctoral work.
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FIGURE 19: Critical and Near-Critical Isotherms of the van der Waals Gas. Above the critical temperature Tc, the
isotherms are always stable since they obey the thermodynamic stability criterion. Below the critical temperature, they
exhibit some region of instability over v. Thus, the critical isotherm for T = Tc is found by demanding that both the first
and second derivatives of p(T, v) with respect to v vanish at the critical point.

an unstable region for T < Tc. To solve for this critical temperature Tc, and hence the critical pressure pc

and critical volume vc, we demand that the isotherms first exhibit a stationary point of inflection once this
critical temperature is crossed, as illustrated in Fig. 19. To show the existence of an inflection point, we find
the derivatives:

(
∂p

∂v

)
T

= − RT

(v − b)2
+

2a

v3(
∂2p

∂v2

)
T

=
2RT

(v − b)3
− 6a

v4

Setting both of these derivatives to zero gives the condition for inflection, returning the critical parameters:

RTc =
8a

27b
, vc = 3b, pc = p(Tc, vc) =

a

27b2
(6.19)

Let’s consider a subcritical isotherm T < Tc and examine the Maxwell construction required for the range
v(2) < v < v(1). At the coexistence pressure p(T ), we have the equation:

p(T ) =
RT

v(1) − b
− a

v(1)
2 =

RT

v(2) − b
− a

v(2)
2 (6.20)

which forms two equations for the three unknowns that we are solving for (v(1), v(2) and p(T ))). The third
equation is provided by the defining condition for the Maxwell construction (Eq. 6.16), which gives:

(
v(1) − v(2)

)
p(T ) =

∫ v(1)

v(2)

dv

(
RT

v − b
− a

v2

)
= RT log

(
v(1) − b

v(2) − b

)
− a

v(1) − v(2)

v(1)v(2)

=⇒ p(T ) +
a

v(1)v(2)
=

RT

v(1) − v(2)
log

(
v(1) − b

v(2) − b

)
(6.21)

56



FIGURE 20: Phase Diagram of the van der Waals Gas. In the full intensive state space, we see that the onset of coexistence
represents a sort of “opening up” of the isotherms to give way to an extended region of liquid-gas coexistence (purple).
For subcritical temperature regions below the critical pressure (dark red), we say that the gas is in a saturated vapour state.
In the region beyond the critical pressure, temperature and volume, the van der Waals fluid is said to be supercritical and
there is no clear distinction between the liquid and gas phases.

Plugging Eq. 6.20 into Eq. 6.21, we turn the left hand side into:

p(T ) +
a

v(1)v(2)
=

RT

v(1) − b
+

a

v(1)
2
v(2)

(
v(1) − v(2)

)
=

RT

v(2) − b
− a

v(2)
2
v(1)

(
v(1) − v(2)

)
From this, we can extract RT and p(T ) as:

RT =
a[

v(1)v(2)
]2(v(1) + v(2)

)(
v(1) − b

)(
v(2) − b

)
(6.22)

p(T ) +
a

v(1)v(2)
=

a[
v(1)v(2)

]2 [(v(2) − b
)
v(1) +

(
v(1) − b

)
v(2)

]
(6.23)

Combining all the intermediate equations thusfar gives us a self-consistent condition on the pairs of spe-
cific volumes between which coexistence occurs for a fixed temperature as:

v(1)

v(1) − b
+

v(2)

v(2) − b
=

v(1) + v(2)

v(1) − v(2)
log

(
v(1) − b

v(2) − b

)
(6.24)

At this point, most textbooks would tell the reader that we have done all we can and that this should be
solved numerically to obtain the coexistence volumes, from which the coexistence pressure can be determined
for each Maxwell construction at a fixed temperature. It turns out that this can be solved analytically [9], but I
am genuinely not willing to do that here since it does not aid the discussion34.

The phase diagram that we have been looking at in p − v space is merely a slice of the full (p, v, T ) phase
diagram shown in Fig. 20. The isotherms for the van der Waals gas shown in Fig. 19 represent what one would

34Please try this for yourself if you are interested, it’s a good exercise in algebra (albeit a hard one since Maxwell himself was not able
to think of how to do it).
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FIGURE 21: Schematic Phase Diagram of Water. The van der Waals equation of state generally captures the essence of
the phase diagram of a substance like water, reproducing the general regions as observed experimentally. In this diagram,
the supercritical region is labelled as a gas, but it should be noted that this is really a supercritical and unstable fluid. There
is also a distinction made between gas and vapour here, where vapour is defined as a semi-gaseous state of liquid origin,
whereas a gas is closer to the van der Waals model.

see if we looked from the front face of this 3D plot, where the subcritical isotherms have had their Maxwell
constructions applied. The typical picture that we are used to from Fig. 14 is simply the view that one would
have when looking at this plot from the right face.

It is rather incredible that an equation of state with just two phenomenological modifications (as in van
der Waals’ case) is a surprisingly accurate descriptor of most real gases. The general structure of the intensive
state space is captured by this model, and it only fails in terms of numerics, where the critical parameters
and coexistence curves have deviations due to the nature of the interactions between the specific molecules
in a gas. There are other gas equations of state (Berthelot, Redlich–Kwong, Dieterici, etc.) which can be
solved similarly to study the critical phenomena that they aim to model, but the van der Waals model is the
simplest (and hence it is the one used in undergraduate thermal physics courses). These equations of state are
typically semi-empirical in that they require some correction motivated by experiment, but provide a much
more accurate numerical characterisation of the critical phenomena. Interactions are more accurately studied
using cluster expansion models such as the virial equation of state, which accounts for the interactions between
pairs of molecules, triples of molecules, etc. These are typically not solvable analytically, and are treated up to
a truncated order in a perturbing parameter such as the interaction strength (or the density).

58



References

1. Nernst, W. The New Heat Theorem: its Foundations in Theory and Experiment. Nature 119, 43–44 (Jan.
1927).

2. Clausius, R. The Mechanical Theory of Heat (Cornell University Library, 1879).

3. Carnot, N. L. S. Reflections on the Motive Power of Fire (translated) (ed Thurston, H.) (Dover Books,
1890).

4. Carathéodory, C. Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen
67, 355–386 (Sept. 1909).

5. Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 493. ISBN: 0471862568 (Wiley,
1985).

6. Lieb, E. H. & Yngvason, J. The physics and mathematics of the second law of thermodynamics. Physics
Reports 310, 1–96 (Mar. 1999).

7. Gibbs, J. W. Elementary Principles in Statistical Mechanics 224. ISBN: 9780486789958 (Dover Publications,
Incorporated, 2014).

8. Sekerka, R. F. Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers.
Thermodynamics and Statistical Mechanics for Scientists and Engineers 610. ISBN: 9780128033043 (Else-
vier Science & Technology Books, 2015).

9. Englert, B.-G. Lectures on Statistical Mechanics (WORLD SCIENTIFIC, June 2020).

59


	Prelude
	The First Law of Thermodynamics
	The Second Law of Thermodynamics
	Thermodynamic Potentials
	The Third Law of Thermodynamics
	Open Systems
	Phases
	References

