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Preface

Please note that this set of notes is NOT meant to be a substitute for any course material, and is instead
complementary to it at best. This content is not endorsed by Bill or the other AIs in any way.

The following review is mostly a transcription of some handwritten notes I kept as an undergraduate
when I took my first and second statistical mechanics courses. It is hard for me to place exact citations
throughout this, as I do not include those in my own notes. As far as possible, I have tried to compile a
list of the references [1–8] which I used when writing these and taking my statistical mechanics course in the
past. Specifically, my primary reference for thermodynamics is Callen [1], while I tend to lean on Reif and
Pathria [2, 5] for statistical mechanics. The professor who taught the second statistical mechanics course which
I took as an undergraduate has also published his notes as a full book now [4]. I also highly recommend read-
ing Gibbs’ original treatise [3], to better appreciate the decades-long process of refining statistical mechanics
that we take for granted today. This document may also be updated periodically, and the latest version will be
put on Canvas as well as my personal webpage.

My first (and second and third) statistical mechanics course(s) brought me plenty of joy, in that it/they
really did change the way I viewed physical systems to the extent that I came out of it understanding far more
than I ever did with just the tools of vanilla classical mechanics, quantum mechanics and electrodynamics
alone. My aim with this review is to (hopefully) pass some of that excitement on to you.
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1 Ensembles

1.1 Microstates and Macrostates

In thermodynamics, one typically analyses the behaviour of a large system by considering its macroscopic
properties, such as temperature T and pressure p. In statistical mechanics, we instead consider the micro-
scopic constituents of the large system and study their properties (such as positions {qi} or momenta {pi} of
the molecules in a gas), hoping to reconcile the statistical averages or fluctuations of these microscopic prop-
erties with the measurable macroscopic quantities. For a system of N particles, we expect it to be completely
characterised by 6N unique values (corresponding to the 3N position coordinates and 3N conjugate momen-
tum coordinates, up to the Heisenberg uncertainty principle). Thus, the microscopic state of a system, known
as a microstate, can be fully specified by simply storing a list of 6N numbers1. Such a set of coordinates is
known as a phase space coordinate, and the R6N space to which it belongs is known as phase space.

On the other hand, the thermodynamic properties of the system as a whole are typically characterised by
very few numbers, known as the macrostate of the system. For instance, an ideal gas of 1023 molecules can
be described by three numbers: p, V and T . Naïvely, one might think that we just lost (1023 − 3) degrees of
freedom in this characterisation, but that is not true. Consider a single microstate α of this gas, and now flip
the signs of all the momenta to obtain some new microstate α′. It should be obvious that the values of {p, V, T}
were left unchanged by this transformation, so we have just shown that multiple microstates can correspond
to a single macrostate2.

1.2 The Ergodic Hypothesis

We consider a single system (collection of particles subject to some Hamiltonian governing its evolution) to
be the object of interest, which is itself comprised of microscopic elements that give us a set of accessible
microstates. The evolution of this system over time is determined entirely by the Hamiltonian, specifically
with the evolution of each coordinate given by Hamilton’s equations:

q̇i =
∂H

∂pi
(1.1)

ṗi = −∂H

∂qi
(1.2)

This will also impose various conservation laws depending on its symmetries. For instance, if the Hamil-
tonian exhibits time-translational symmetry (∂H∂t = 0) , then the energy of the system must be conserved over
time. Over the course of its evolution, we may be interested in specific properties of the system which vary
for the different microstates, and hence macrostates available to us. To determine their expectation values, we
need to somehow average these properties over the course of the system’s evolution.

This is where we can make a powerful assumption, one which fails us only in a small (but important)
class of problems3. Typically, we will have a system evolving in phase space over time, moving on a surface
of constant E while accessing a large set of microstates over time, with a path denoted by α(E, t) as shown

1Uh yeah good luck. For a thermodynamically large system where N ∼ 1023, storing these numbers with machine precision at the
picometer (10−12 pm) scale would require the same amount of information as the current size of the Internet.

2Another example would be to take one microstate, pluck a single molecule from one spot and place it randomly in a different spot.
Intuition tells us that this will not affect any of the macroscopic properties of the system.

3See the Fermi–Pasta–Ulam–Tsingou problem. Interestingly, this is one of the first examples of a many-body physics problem solved
on a computer, and it was done by Mary Tsingou (a pioneer programmer on the MANIAC computer at Los Alamos). Her contributions
went unrecognised for decades until 2020 when Los Alamos first publicly acknowledged her role in the project.

2



FIGURE 1: Hamiltonian Evolution on a Hypersurface. A system in some microstate α will evolve according to Hamil-
ton’s equations, but is typically constrained by conservation laws to reside on some high-dimensional surface (known as a
hypersurface) in phase space. In this case, the system is constrained to move on a surface of constant energy E. The surface
is actually an infinitesimally thick sheet of thickness δE, but this can be ignored for most purposes. The ergodic hypothesis
allows us to replace a single system’s time evolution over this surface with a large number of systems at uniformly random
points on this path.

in Fig. 1. The ergodic hypothesis allows us to assume that over long periods of time, the time spent by the
system in a region of phase space4 is proportional to the volume of said region, meaning that one is more
likely to re-visit larger regions more frequently. A more useful formulation of this statement is as follows –
suppose we initialise a large number of identical systems with N particles of total energy E, governed by the
same Hamiltonian H . If we were to compute the probability distribution of microstates in the ensemble of
identical systems, the ergodic hypothesis implies that this would return the same distribution as the temporal
distribution obtained by monitoring the evolution of a single system over long times. Simply put, the ergodic
hypothesis tells us that the temporal average is equivalent to the ensemble average (in the t → ∞, N → ∞
limit).

With this, we formally define the statistical ensemble as the collection of identical systems, with copies in
every accessible microstate {α(E)}. The ensemble average of a physical property X is then given by:

⟨X⟩ =
∑
α

pαXα (1.3)

where pα is the probability of occupying a single microstate α, subject to the normalisation condition on
the total probability

∑
α pα = 1.

1.3 Ensembles and Phase Space

With the idea of an ensemble now in place, we can specify the composition of an ensemble by invoking the
idea of phase space density. With our statistical ensemble {α(E)} distributed around phase space along the
hypersurface of constant E, the phase space density ρ(q,p) tells us how many copies of our system we expect
to find in some infinitesimal region of phase space. Note that the vectors q and p are each 3N -dimensional

4When we say region here, we are technically identifying this as a macrostate, though there is some debate about the semantics of this
in the mathematical community.
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objects which represent the positions and momenta of all particles in the system. Mathematically, this is written
as:

dN(q,p) = ρ(q,p)dqdp (1.4)

Specifically, dN(q,p) is the number of copies of the system found in the set of states between phase space
coordinates (q,p) and (q + dq,p + dp). While we initiated this discussion of phase space by considering a
single system evolving over time, then used the ergodic hypothesis to obtain an ensemble in phase space, let
us now consider the evolution of the ensemble itself over time. Demanding that the number of copies in the
ensemble must be conserved during evolution, we can write a continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 (1.5)

where v is the velocity of the flowing phase space density. Mathematically, we can write this velocity as:

dr = dqiq̂i + dpip̂i

=⇒ dr

dt
= v = q̇iq̂i + ṗip̂i (1.6)

where the implicit summation over i is implied (Einstein notation), and q̂i, p̂i are the unit vectors corre-
sponding to movement along those respective axes in phase space. We now use this in the continuity equation:

0 =
∂ρ

∂t
+∇ · (ρv)

=
∂ρ

∂t
+

∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

=
∂ρ

∂t
+

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

(
∂

∂qi
q̇i +

∂

∂pi
ṗi

)

=
∂ρ

∂t
+

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

����������:0(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
=

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ

=

(
∂

∂t
+ v ·∇

)
ρ =

Dρ

Dt
(1.7)

In the fourth line, we recognise that the time derivatives of the positions and momenta are provided by
Hamilton’s equations (Eq. 1.1,1.2), and use Schwarz’ theorem to commute the partial derivatives. The final
result Dρ/Dt is known as the Lagrangian derivative5. Unlike the standard time derivative ∂/∂t taken in a
stationary coordinate system, the Lagrangian derivative accounts for the fact that the infinitesimal element
under consideration may exist within an underlying flow, as shown in Fig. 2. That is, it represents the time
derivative of the density of some volume which itself moves according to some velocity field v. Physically, the
vanishing of the Lagrangian derivative as shown in Eq. 1.7 implies that the density of a phase space volume
element does not change as it moves through phase space, representing an incompressible flow in phase space!

Now, we also demand that the ensemble at equilibrium must have a constant phase space density over
time, since any changes in ρ at any point would imply that the system is still undergoing the equilibration
process. Mathematically, this is equivalent to setting ∂ρ/∂t = 0, which then gives:

5Also known as the material derivative or convective derivative, depending on what department you’re in.
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FIGURE 2: Lagrangian derivative with a flow field. The Lagrangian derivative differs from the standard time derivative
in that it follows a specific region of the phase space as it flows according to the flow field (or velocity) v.

v · (∇ρ) = 0 (1.8)

This finally implies that the flow of phase space density occurs along a surface of constant ρ. Physically,
this means that if ρ is a function of some quantity like the energy E of the system, then the phase space density
is only able to flow along the hypersurface of constant E, implying that an equilibrium ensemble will remain
at equilibrium for all times! With these underlying ideas of statistical ensembles and their evolution in place,
we can start doing some real physics with them.

2 The Microcanonical Ensemble (MCE)

The first ensemble we encounter is the simplest in formulation, yet most often touted as the hardest to work
with. We first need to introduce the quantity Ω(E, V,N), which I will frequently call the multiplicity6. The
multiplicity represents the number of microstates of a system which have a total energy E, total volume V ,
total particle number N , in addition to any other quantities that may be relevant. Using this quantity, we state
one of the most fundamental relations in statistical mechanics, the Boltzmann entropy7:

S(E, V,N) = kB log Ω(E, V,N) (2.1)

Thus, we now have a link between the macroscopic properties of a system (such as S, E, V , N ), and
the microscopic properties (such as Ω). Alongside his entropy postulate, Boltzmann also postulated that all
microstates of a given energy E0 are equally likely to be occupied. Mathematically, this is written as:

Pmc
α (E, V,N) =

 1
Ω(E0,V,N) , E0 − δE < E < E0

0 , otherwise
(2.2)

for some small energy window δE ≪ E0. Imposing this uniform probability distribution on the vari-
ous microstates in the statistical ensemble then produces the microcanonical ensemble (MCE). Since the MCE

6I believe Bill uses the symbol N in his notes for this same quantity. Boltzmann used W for Wahrscheinlichkeit (the German word for
probability), and that is the notation used in the inscription of his entropy postulate on his gravestone.

7Some call this a postulate, others call it a formula. I choose to stick with the term postulate since it seems almost divined to me, but it’s
entirely possible that I just don’t know enough about the origin of the statement.
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demands that each system in the ensemble is confined to the hypersurfaces of constant E, V and N , it repre-
sents all possible states of a system that cannot exchange its energy (and other variables like volume, number,
etc.). This makes the MCE the ideal ensemble for studying isolated systems, which are sufficiently decoupled
from their environments that it justifies the assumption of constant E. Macroscopic properties are then easily
obtained as ensemble averages using:

⟨X⟩ = 1

Ω(E0)

∑
α

Xα (2.3)

We can also consider the characteristic size of fluctuations ∆X in the observed values of these macro-
scopic properties, which we expect to scale as ∆X/X ∼ 1/

√
N ≪ 1. This is ridiculously small for a thermo-

dynamically large system (N ∼ 1023), so the expectation values obtained from the MCE average are a good
characterisation of the macroscopic properties at all times.

2.1 Microcanonical Thermodynamics

To study the thermodynamic properties of the microcanonical characterisation of a system, we begin with the
fundamental thermodynamic relation8:

dE = TdS − pdV + µdN (2.4)

=⇒ dS =
1

T
dE +

p

T
dV − µ

T
dN (2.5)

Identifying each of the differential coefficients with the respective partial derivatives, we thus see that the
equations of state for this system are obtained as:

1

T
=

(
∂S

∂E

)
V,N

(2.6)

p

T
=

(
∂S

∂V

)
E,N

(2.7)

µ

T
= −

(
∂S

∂N

)
E,V

(2.8)

where the subscripts explicitly reflect the quantities kept constant in taking the partial derivative. We will
now use this to establish the idea of thermodynamic equilibrium in the MCE. For this, we consider a composite
system of total energy E, with two weakly interacting and statistically independent subsystems (E1, V1, N1)

and (E2, V2, N2), subject to the constraints that their energies, volumes and numbers must add as E = E1+E2,
V = V1 + V2, N = N1 +N2. Now, the multiplicity Ω factorises into a product over the multiplicities of the two
subsystems:

Ω(E, V,N) = Ω1(E1, V1, N1)× Ω2(E2, V2, N2) (2.9)

=⇒ S(E, V,N) = S1(E1, V1, N1) + S2(E2, V2, N2) (2.10)

which ensures the total entropy is additive. Furthermore, the maximisation of S at equilibrium also im-
plies the maximisation of Ω, since S is a monotonically increasing function of Ω. We will use this to demonstrate

8This is really just a combination of the first and second laws of thermodynamics, and many would just call this the first law of
thermodynamics. I choose not to do so, since the first law in its original form retains the fact that heat is a path variable and not a state
variable, while the second law provides us the definition of entropy to turn the heat term into a well-defined state variable.
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that the maximisation of the subsystems’ multiplicities results in the two subsystems attaining thermodynamic
equilibrium with one another. We start with Eq. 2.9:

dΩ = Ω2 dΩ1 +Ω1 dΩ2 = 0 (at equilibrium) (2.11)

dΩ1

Ω1
+

dΩ2

Ω2
= 0 (2.12)

=⇒ d(log Ω1) + d(log Ω2) = 0 (2.13)

Since the multiplicity is a function of E, V and N , we write its total differential as:

d(log Ωi) =

(
∂ log Ωi

∂E

)
V,N

dE +

(
∂ log Ωi

∂V

)
E,N

dV +

(
∂ log Ωi

∂N

)
E,V

dN

Plugging this into Eq. 2.13 returns:

[(
∂ log Ω1

∂E

)
V,N

−
(
∂ log Ω2

∂E

)
V,N

]
dE1 +

[(
∂ log Ω1

∂V

)
E,N

−
(
∂ log Ω2

∂V

)
E,N

]
dV1

+

[(
∂ log Ω1

∂N

)
E,V

−
(
∂ log Ω2

∂N

)
E,V

]
dN1 = 0 (2.14)

where the imposition of the constraints forces dE1 = −dE2, and so on for the other variables. Since the
right hand side has no dependence on any of the differential variables, each term in the square brackets must
identically vanish. Using the equations of state from Eqs. 2.6–2.8, we thus arrive at:

1

T1
− 1

T2
= 0 =⇒ T1 = T2 (2.15)

p1
T1

− p2
T2

= 0 =⇒ p1 = p2 (2.16)

µ2

T2
− µ1

T1
= 0 =⇒ µ1 = µ2 (2.17)

Jointly, these equations imply the attainment of thermodynamic equilibrium between the two subsys-
tems! We thus see that the Boltzmann entropy postulate acts as a bridge to connect the microscopic ideas of
statistical mechanics with the macroscopic ideas of thermodynamics, whilst maintaining a consistent picture
of thermodynamic equilibrium!

2.2 Two-Level Systems in the MCE

We now turn our attention to some physical examples of constructing and utilising the microcanonical ensem-
ble for studying real systems. In the discrete case, there are two toy models which are quintessential for any
statistical mechanics course. The first of these is the collection of two-level systems. These are sometimes also
known as classical spins, in that they represent a point-like degree of freedom, occupying either of two states
at a given time. The two states have energies ϵ1 and ϵ2, which can always be transformed using an arbitrary
linear shift in the energy to:

ϵn = (−1)nϵ (2.18)

With a large N number of such classical spins, the microstates of the entire system are characterised are
completely characterised by specifying the set of values α ≡ {n1, n2, · · · , nN} which contains the state of each
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spin. We also assume that the spins in the large set are able to exchange energy with one another, through
some weak coupling interaction. Now that we have constructed the microstates, and hence the ensemble, we
proceed by attempting to construct the multiplicity corresponding to a given energy E and number N . We
first note that these are constrained by the conservation of energy and particle number as:N = N1 +N2

E = (N2 −N1)ϵ
(2.19)

We then write the multiplicity as:

Ω(E,N ;N1, N2) =
N !

N1!N2!
(2.20)

Using this, we proceed to compute the entropy:

S(E,N ;N1, N2) = kB log Ω(E,N ;N1, N2)

≈ −NkB

(
N1

N
log

N1

N
+

N2

N
log

N2

N

)
(2.21)

where I have used Stirling’s approximation to simplify the factorials. Knowing that the answer should
ultimately depend only on the total quantities E and N , we should invert Eq. 2.19 to obtain N1 and N2 as
functions of E and N . These are easily obtained as:N1 = N

2

(
1− E

Nϵ

)
N2 = N

2

(
1 + E

Nϵ

) (2.22)

Plugging these into Eq. 2.21, we thus obtain the entropy:

S(E,N) = −NkB
2

(
1 +

E

Nϵ

)
log

[
1

2

(
1 +

E

Nϵ

)]
− NkB

2

(
1− E

Nϵ

)
log

[
1

2

(
1− E

Nϵ

)]
(2.23)

Using the equation of state Eq. 2.6, we can then compute the thermodynamical properties of the system
such as its temperature9:

T (E,N) =
2ϵ

kB

[
log

(
Nϵ− E

Nϵ+ E

)]−1

(2.24)

In this manner, we can obtain all necessary thermodynamic properties by simply taking the appropriate
derivatives and multiplying by the temperature (where applicable).

2.3 Harmonic Oscillators

We now consider the second toy model of interest, the quantum harmonic oscillator. In this setup, the system
once again consists of a large number of copies of a point-like degree of freedom which can be in any state on
an energy ladder. These energies are labelled by:

Ei = niℏω (2.25)
9These derivatives and inversions are usually where a ton of mathematical gymnastics takes place, and is typically the reason why the

microcanonical ensemble is harder to work with for studying thermodynamic properties. It also makes for amazing exam questions.
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where Ei is the energy of the i-th oscillator, which is in the ni-th excited state. The microstates are now
once again labelled by α = {n1, n2, · · · , nN}, except ni is now allowed to take any non-negative integer value.
The energy constraint is now simply given by:

E = ℏω
N∑
i=1

ni =⇒ M =
E

ℏω
=

n∑
i=1

ni (2.26)

where we define M to be the total number of energy quanta (ℏω’s) present in the system. Now, we are left
with the simple combinatorics problem of distributing M objects into N bins. As it turns out, it is a little easier
to instead consider this equivalent problem – suppose we have M objects and wish to place (N − 1) dividers
between them. The dividers thus partition the set of objects into N distinct regions, each corresponding to the
number of energy quanta placed in a given oscillator. This is a far easier combinatorical problem, as illustrated
in Fig. 3, and it avoids having to impose an awkward constraint through a Kronecker delta.

FIGURE 3: Quantum Harmonic Oscillators in the MCE. (a) With a fixed energy E, and hence a fixed number of energy
quanta M , we have to distribute these quanta amongst N oscillators. (b) An equivalent problem is to instead place (N −1)

dividers between M quanta, with the number of quanta between two adjacent dividers representing the number of quanta
placed in a given oscillator. We are also allowed to place two (or more) dividers immediately adjacent to one another,
which simply implies that no quanta are given to some oscillators.

In this modified problem, the multiplicity is then easily written as:

Ω(E,N ;M) =
(N − 1 +M)!

(N − 1)!M !
(2.27)

From this, we can likewise compute the entropy:

S(E,N ;M) = kB log Ω(E,N ;M)

≈ −NkB

[
M

N
log

(
M

N +M

)
+ log

(
N

N +M

)]
(2.28)

where we use Stirling’s approximation to tame the factorials. Finally, the entropy is obtained in standard
form by replacing M with E:

S(E,N) = −NkB

[
E

Nℏω
log

(
E/ℏω

N + E/ℏω

)
+ log

(
N

N + E/ℏω

)]
(2.29)
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In a similar manner to the previous example, all necessary thermodynamic properties can be extracted
from this equation of state through the appropriate derivatives and subsequent gymnastics.

3 The Canonical Ensemble (CE)

Now that we have studied the microcanonical ensemble and the thermodynamic potentials which may be
useful in non-isolated situations, we can start trying to construct new ensembles for these. While the MCE is
a powerful construction for studying the statistical and thermodynamical properties of isolated systems, we
rarely (or never, as I would argue) come across systems that are truly isolated. In fact, (maybe) the only true
isolated system which exists is the entire universe as a whole. In fact, the vast majority of systems that are
experimentally studied by physicists in the lab are well approximated by closed systems. These constitute
systems of interacting particles which obey the constraint of fixed particle number, but allow for the exchange
of energy with some external environment. As a result, it is common for us to characterise a system not by the
variables (E, V,N), but rather the variables (T, V,N)10.

Our job now is to work within the framework of the MCE and find a way to adequately construct a
statistical ensemble being held at constant T , V and N . The resultant statistical ensemble is known as the
canonical ensemble (CE).

3.1 Obtaining the CE from the MCE

FIGURE 4: Construction of the Canonical Ensemble. We consider a small subsystem S placed amidst a much larger
reservoir R, such that the enclosure containing R and S can be considered an isolated system. The subsystem S is then
considered a good approximation to a closed system, with only the exchange of heat allowed across the barrier between
itself and the reservoir.

In constructing this new ensemble from the MCE, our first job is to assign the right probability distribution
to the microstates. To do this, we first consider a large isolated system with a much smaller subsystem S , which
will be our system of interest. The remainder of the isolated system will be denoted by R, which denotes the

10In the chemical sciences, it further turns out that the ideal variables are actually (T, p,N). This is because controlled reactions and
syntheses typically occur under environments of well-known temperature and pressure. In a physics experiment, however, it is far more
common for us to enclose the system of interest within a rigid box, forbidding the exchange of volume with the environment.
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thermal reservoir or thermal bath. Now, let S be in a specific microstate α of energy Eα. The total energy of
the composite isolated system is: ET = ER + Eα. Holding S in a specific microstate α, let’s now count the
number of microstates available to the composite isolated system:

ΩT (ET ;Eα) = ΩR(ET − Eα) ΩS(Eα)︸ ︷︷ ︸
=1

= ΩR(ET − Eα) (3.1)

where we note that the multiplicity of the subsystem S is trivially equal to 1 by virtue of our imposition
that S is in a specific microstate. To construct the probability distribution, we then use the fact that the com-
posite isolated system is well represented by a MCE. Thus, we can say that all microstates of the composite
system with energy ET have equal probability, and we would just like to determine the conditional probability
that the subsystem S is also in microstate α, while the composite system has energy ET . This probability is
given by:

Pα =
ΩT (ET ;Eα)

ΩT (ET )

=
exp

[
SR(ET−Eα)

kB

]
exp

[
ST (ET )

kB

] (3.2)

We now have the rough beginnings of a probability for the microstate α, but we need to obtain expressions
for ST (ET ) and SR(ET − Eα) in terms of the subsystem S, since the characterisation of the reservoir R and
composite isolated system are usually unknown to us. One possible avenue is to use the fact that microcanon-
ical fluctuations are incredibly small, so the typical energy ⟨E⟩ of the subsystem S is a good characterisation of
the measurable energy. We can use the additivity of entropy to write:

ST (ET ) = SR(ET − ⟨E⟩) + S(⟨E⟩) (3.3)

where ⟨E⟩ is the average internal energy of S in any unrestricted state (it can be in any of its accessible
microstates) at equilibrium. We now invoke the idea that any changes in the energy of the subsystem S will
never significantly change the energy of the reservoir R, to make the approximation:

| ⟨E⟩ − Eα|
|ET − ⟨E⟩ |

≪ 1 (3.4)

This is a key tool for performing a Taylor expansion on the entropy of the reservoir in Eq. 3.2, since this
will now relate the entropy of R to the energies of the subsystem S and the total composite system. For this,
we take the entropy of the reservoir and perform the standard trick of inserting a vanishing term:

SR(ET − Eα) = SR[(ET − ⟨E⟩) + (⟨E⟩ − Eα)] (3.5)

With this expression, we can invoke a Taylor expansion around (ET − ⟨E⟩) with the perturbation as the
term (⟨E⟩ − Eα). This produces a first-order expansion:

SR(ET − Eα) ≈ SR(ER)

∣∣∣∣
ER=ET−⟨E⟩

+
dSR(ER)

dER

∣∣∣∣
ER=ET−⟨E⟩

(⟨E⟩ − Eα)

= SR(ET − ⟨E⟩) + 1

TR
(⟨E⟩ − Eα) (3.6)
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Thus, we have the temperature TR of the reservoir as a relatively fixed value, which sets the temperature
of the subsystem if the reservoir is sufficiently large compared to the subsystem. We can finally write the
probability of occupying a specific microstate α from Eq. 3.2 as:

Pα =
exp

[
SR(ET−⟨E⟩)

kB

]
exp

[
⟨E⟩−Eα

kBTR

]
exp

[
ST (ET )

kB

]
= exp

[
−S(⟨E⟩)

kB

]
exp

(
⟨E⟩
kBTR

)
exp

(
− Eα

kBTR

)
(3.7)

In this expression for the probability of a single microstate α of the subsystem S, we note that the only
appearance of a temperature is in the temperature TR of the reservoir. This agrees with our intuition that a
sufficiently large reservoir at a fixed temperature will set the temperature of the smaller system which it is in
contact with. We thus make the identification that TR ≡ T is the only relevant temperature in the composite
system and rewrite the probabilty as:

Pα = exp

[
⟨E⟩ − TS(⟨E⟩)

kBT

]
exp

(
− Eα

kBT

)
= exp(βF ) exp(−βEα), where β =

1

kBT
(3.8)

where we use the definition of the Helmholtz free energy F = ⟨E⟩ − TS(⟨E⟩). Thus, we finally have the
probability of occupancy in each microstate α of the subsystem S, in terms of measurable observables of the
subsystem. Interestingly, we see that the macroscopic Legendre transformation from internal energy to the
Helmholtz free energy was automatically performed by the coupling of the system to the heat bath R, with
the appearance of F in the canonical probability distribution now. To complete the procedure, we just need to
normalise this to ensure that all probabilities sum to unity. We thus obtain:

∑
α

exp(βF ) exp(−βEα) = 1

=⇒
∑
α

exp(−βEα) = exp(−βF ) = Z(T, V,N) (3.9)

Here, we have defined the quantity Z(T, V,N) which is obtained by summing all of the individual terms
exp(−βEα) for all subsystem microstates. This is arguably the most important object in practical statistical
mechanics, and is known as the canonical partition function. With the canonical partition function, we have
a normalisation factor for our probabilities and can write:

Pα =
exp(−βEα)∑
α exp(−βEα)

=
1

Z
exp(−βEα) (3.10)

The canonical probability distribution thus applies a weight to the probability of a microstate α that is ex-
ponentially linked to its energy Eα and the inverse temperature β. The canonical partition function Z(T, V,N)

enters this expression by acting as a normalisation factor, being defined as the sum over all canonical weights
exp(−βEα). In some cases, it turns out to be easier to sum the partition function over energy levels Eα instead
of microstates α. However, we must then occur for the degeneracy g(Eα) of each energy level:

Z(T, V,N) =
∑
Eα

g(Eα) exp(−βEα) (3.11)

As with the microcanonical ensemble, this assumes that all microstates with the same energy are equally
likely to be occupied.
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3.2 Canonical Thermodynamics

While the canonical partition function looks like a simple normalisation factor, it turns out to be an incredibly
powerful link between the microscopic and macroscopic worlds of statistical mechanics and thermodynamics
respectively. Just as the Boltzmann entropy postulate provides such a link in studying an isolated system,
the canonical partition function plays a similar role in the case of a closed system. We start by looking at
the thermodynamic quantities associated with this ensemble. The simplest and most straightforward is the
energy:

⟨E⟩ =
∑
α

PαEα

=
1

Z

∑
α

Eα exp(−βEα)

= − 1

Z

(
∂Z

∂β

)
V,N

= −
(
∂ logZ

∂β

)
V,N

(3.12)

We can also consider the characteristic size of energy fluctuations through:

〈
(∆E)2

〉
=
〈
(E − ⟨E⟩)2

〉
=
〈
E2
〉
− ⟨E⟩2

=
1

Z

(
∂2Z

∂β2

)
V,N

− 1

Z2

(
∂Z

∂β

)2

V,N

=

(
∂2 logZ

∂β2

)
V,N

(3.13)

= −
(
∂ ⟨E⟩
∂β

)
V,N

(3.14)

From the fundamental relation in energy representation (Eq. ??), we observe that:(
∂E

∂T

)
V,N

= T

(
∂S

∂T

)
V,N

= CV (3.15)

where CV is the heat capacity of the system at constant volume. In the thermodynamic setting, we clearly
have ⟨E⟩ = E since the thermodynamic variables are defined at equilibrium. Finally, we convert the derivative
∂/∂β = −kBT

2 ∂/∂T to obtain:

〈
(∆E)

2
〉
= kBT

2CV (3.16)

Rather strangely, this relates the typical size of energy fluctuations in the canonical ensemble to the tem-
perature and constant-volume heat capacity, which are both measurable quantities! On the right, we see that
T is intensive, while CV is extensive, so we expect the fluctuations to scale as

〈
(∆E)

2
〉

∼ N , and thus the
relative size of the fluctuations scale as: √〈

(∆E)
2
〉

⟨E⟩
∼ 1√

N
≪ 1 (3.17)
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Thus, we see that while the energy fluctuates in the canonical ensemble, the fluctuations are so absurdly
small relative to the energy (suppressed by a factor of approximately 10−12) that only a small range of energies
around the expected equilibrium ⟨E⟩ are important for any computation. As we recall, the microcanonical
ensemble also uses a thin energy shell of small size δE ≪ E for restricting the microcanonical probability
distribution under consideration. These restrictions are, in a good sense, the same consideration – we thus
consider both the canonical and microcanonical ensemble equivalent for practical computational purposes.

Finally, we can also link Eq. ?? and Eq. 3.9 to write expressions for the three equations of state: (using the
fact that the canonical partition function is linked to the Helmholtz free energy as F = −kBT logZ(T, V,N))

S(T, V,N) = −
(
∂F

∂T

)
V,N

(3.18)

p(T, V,N) = −
(
∂F

∂V

)
T,N

(3.19)

µ(T, V,N) =

(
∂F

∂N

)
T,V

(3.20)

3.3 Two-Level Systems in the CE

We now return to the example of two-level systems, but instead study this in the canonical ensemble held
at fixed temperature T . The setup here is similar to before, in that we have a large N number of identical,
weakly-interacting classical spins. Each particle once again occupies a non-degenerate energy level given by
Eq. 2.18. The microstates of the system are then described by the set of values {ni} ≡ α. The goal in the MCE
formalism was to find an expression for the entropy, from which all other thermodynamic quantities could be
obtained using the appropriate derivatives. Here, we have a similar goal, except our keystone now comes in
the form of the canonical partition function. We write this as:

Z(T,N) =
∑
α

exp(−βEα)

=

2∑
n1=1

2∑
n2=1

· · ·
2∑

nN=1

exp

[
−β

N∑
i=1

(−1)niϵ

]

=

N∏
i=1

2∑
ni=1

exp
[
(−1)ni+1βϵ

]
= [exp(βϵ) + exp(−βϵ)]

N

= [2 cosh (βϵ)]
N (3.21)

In the second line, we convert the sum over microstates to a product of N sums over the N classical
spins, each of which can occupy one of two possible states. In the third line, we recognise that all N sums
are identical, so this can be written as a product of N copies of a single sum. In the fourth line, we explicitly
evaluate the sum since only two states are in consideration for a single classical spin, and finally convert it to
the cleaner hyperbolic expression. This also allows us to evaluate the Helmholtz free energy simply as:

F (T,N) = −kBT logZ

= −NkBT

[
log 2 + log cosh

(
ϵ

kBT

)]
(3.22)
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3.4 Harmonic Oscillators in the CE

We also return to the example of the quantum harmonic oscillators, with our setup similar to before except the
entire system is now held at some given temperature T . The energy of each oscillator is once again provided
by Eq. 2.25. We then proceed by finding the canonical partition function:

Z(T,N) =
∑
α

exp(−βEα)

=

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nN=0

exp

(
−β

N∑
i=1

nℏω

)

=

N∏
i=1

∞∑
ni=0

exp(−βℏωni)

=

[ ∞∑
n=0

exp(−βℏωn)

]N

=

[
1

1− exp(−βℏω)

]N
(3.23)

In the last line, we use the formula for the infinite geometric sum to obtain the compact final expression.
We can go a small step further and obtain the Helmholtz free energy in this representation as:

F (T,N) = −kBT logZ

= NkBT log

[
1− exp

(
ℏω
kBT

)]
(3.24)

3.5 Factorisation of the Canonical Partition Function

Before ending our study of the canonical partition function, we should also consider the special cases where the
Hamiltonian of the system is composed of separable parts. In this situation, the energy of each microstate can
be broken into several contributions which are decoupled from one another. Suppose we have the separable
Hamiltonian of the form:

H =
∑
i

Hi =⇒ Eα =
∑
i

Ei (3.25)

This would allow for the canonical partition function to be broken up as:

Z =
∑
α

exp(−βEα) =
∏
i

∑
αi

exp(−βEi) =
∏
i

Zi (3.26)

Thus, the partition function is multiplicatively separable for an additively separable Hamiltonian! This
means we can study the various Hamiltonian contributions individually to form partition functions for each
degree of freedom, before obtaining the overall partition function by simply multiplying the contributions
together. This is also why a system with N copies of some identical smaller system has its partition function
easily broken up as N copies of the single-particle partition function11. There is one small problem here, which
turns out to be a huge problem for the case of identical/indistinguishable particles – this grossly overcounts

11This is one of the main reasons why the study of interacting systems is incredibly difficult, as the introduction of interactions between
constituent particles will mix the degrees of freedom together and no longer allow us to decouple the various parts of the Hamiltonian.
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the number of microstates present. For theatrics, let me show you the solution now but demonstrate a case
where this returns really stupid results later on. The correct expression for identical particles is given by:

ZN =
1

N !
ZN
1 (3.27)

3.6 The Gibbs Entropy Formula

Previously, we had the Boltzmann entropy postulate in Eq. 2.1 which told us the entropy associated with an
isolated system at some fixed energy, volume and particle number (in addition to any other known extensive
variables). In the canonical ensemble, we found that the entropy could be obtained as a simple derivative of the
partition function, as dictated by the equations of state for the Helmholtz representation of the fundamental
relation. The question now is whether we can find a statement for the entropy that is similar to the Boltzmann
postulate, in that it describes the entropy based on the microscopic probability distribution, rather than the
macroscopic equilibrium free energy. Indeed, such an expression exists and is not hard to obtain. We begin
with the entropy from Eq. ?? as:

S =
1

T
(⟨E⟩ − F )

= kBβ(⟨E⟩ − F )

= kB(logZ + β ⟨E⟩) (3.28)

where in the last line, we use the relation Eq. 3.9 to convert the appearance of the macroscopic Helmholtz
free energy to the microscopic partition function. To proceed, we must somehow thrust ourselves back into
the microscopic world, and this is easily achieved through the second term, which is a probabilistic sum over
all microscopic energies of the various microstates. We thus write:

S = kB
∑
α

Pα(logZ + βEα)

= kB
∑
α

Pα log
(
ZeβEα

)
= kB

∑
α

Pα log
1

Pα

= −kB
∑
α

Pα logPα (3.29)

where in the third line, we invoke the definition of the canonical probability from Eq. 3.10. This final
expression is known as the Gibbs entropy formula, and is an incredibly general and powerful way to express
the entropy of a system in terms of its microstate probabilities12. As a simple example, we can show that Gibbs’
entropy formula reduces to that of Boltzmann in the MCE where Pmc

α = 1/Ω:

12This also provides a beautiful connection between statistical mechanics and information theory, though it’s funny you never see
Claude Shannon mention Gibbs’ name even once in his original paper where he introduces his famous entropy formula (which is nearly
identical to Gibbs’).
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S = −kB
∑
α

Pα logPα

= −kB
∑
α

1

Ω
log

1

Ω

= kB
∑
α

1

Ω
logΩ

= kB log Ω

where we simply sum over all Ω microstates to cancel the factor of 1/Ω. In general, the question of which
entropy formula is more useful ultimately depends on the provided information. If we are handed a ton
of microscopic information, such as the probability distribution amongst the microstates13, then the Gibbs
formula is ideal. If we are instead given the Hamiltonian of the system and know to use the canonical ensemble
since it is being held at some fixed temperature, it may be easier to work out the partition function and take
the appropriate derivative of the macroscopic equilibrium Helmholtz free energy. If we are given an isolated
system, then we should turn to counting arguments and determine an expression for Ω itself, obtaining the
entropy using the Boltzmann entropy postulate.

4 The Grand Canonical Ensemble (GCE)

We finally turn to the last statistical ensemble of great interest in this course, which arises from relaxing the
restriction of particle conservation. That is, we had previously considered systems which always maintained
a constant particle number in both the microcanonical and canonical ensembles. Real physical systems which
attain chemical equilibrium almost definitely exhibit some form of particle exchange with an external reservoir,
and this means the set of variables (T, V,N) are no longer ideal for characterising the equilibrium state of the
system since we would expect N to fluctuate. Instead, we now expect that the conjugate variable µ, known
as the chemical potential, would be an ideal characterisation of the equilibrium state, leaving us with the
canonical variables (T, V, µ). This is obtained by taking the Legendre transform of the Helmholtz free energy
on the conjugate variable pair (µ,N) to obtain:

Φ = ⟨E⟩ − TS − µ ⟨N⟩ =⇒ dΦ = −S dT − p dV −N dµ (4.1)

where Φ is known as the grand potential, or Landau potential depending on your school, or the schools
of your educators. This potential will return later, though it is good to have the expectation beforehand that
the grand potential will make an appearance, given that we are going to couple our system of interest to a heat
and particle reservoir. We now begin again from the framework of the MCE, and (in a similar vein to the CE),
construct a statistical ensemble being held at constant T , V and µ. The resultant statistical ensemble is known
as the grand canonical ensemble (GCE).

4.1 Obtaining the GCE from the MCE

Similar to the derivation of the CE from the MCE, we consider a subsystem S coupled to a much larger reser-
voir R, with the entire system R+ S considered isolated. The entire system has total energy ET and total par-
ticle number NT , while the subsystem S in a given microstate α has energy ENS ,α, with the subscript denoting

13Nature (and Bill) will probably never do this for you, it’s too nice and unrealistic.

17



FIGURE 5: Construction of the Grand Canonical Ensemble. We consider a small subsystem S placed amidst a much
larger reservoir R, such that the enclosure containing R and S can be considered an isolated system. The subsystem S is
then considered an open system, with the exchange of heat and particles allowed across the barrier between itself and the
reservoir.

that this energy is for a definite microstate with NS particles. Then, the total energy is: ET = ER + ENS ,α,
where the energy of a single microstate can be interpreted as ENS ,α = Eα(NS). We now count the multiplicity
for the total system given that the subsystem S is in a definite microstate α:

ΩT (ET , NT ;ENS ,α) = ΩR(ET − ENS ,α, NT −NS) Ω(ENS ,α;NS)︸ ︷︷ ︸
=1

= ΩR(ET − ENS ,α, NT −NS) (4.2)

where the multiplicity of the subsystem is trivially set to 1 by virtue of our construction. Now, we invoke
the Boltzmann entropy to get the probability of the subsystem S being in a microstate α with energy ENS ,α:

PNS ,α =
ΩT (ET , NT ;ENS ,α)

ΩT (ET , NT )

=
exp

[
SR(ET−ENS ,α,NT−NS)

kB

]
exp

[
ST (ET ,NT )

kB

] (4.3)

To remove the dependence of the entropy expression on characteristics of the reservoir (which are unmea-
surable), we once again hint at expanding around the equilibrium expectation values of E and N , for which
we need to make the following assumptions:

| ⟨E⟩ − ENS ,α|
|ET − ⟨E⟩ |

≪ 1 (4.4)

| ⟨N⟩ −NS |
|NT − ⟨N⟩ |

≪ 1 (4.5)

We then use this to expand the entropy of the reservoir to first order in small deviations from equilibrium,
in both the energy and particle number:
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SR(ET − ENS ,α, NT −NS) = SR[(ET − ⟨E⟩) + (⟨E⟩ − ENS ,α), (NT − ⟨N⟩) + (⟨N⟩ −NS)]

≈ SR(ET − ⟨E⟩ , NT − ⟨N⟩) + ∂SR

∂ER

∣∣∣∣
ER=ET−⟨E⟩

(⟨E⟩ − ENS ,α)

+
∂SR

∂NR

∣∣∣∣
NR=NT−⟨N⟩

(⟨N⟩ −NS)

= SR(ET − ⟨E⟩ , NT − ⟨N⟩) + ⟨E⟩ − ENS ,α

TR
− µR(⟨N⟩ −NS)

TR
(4.6)

where in the last line, we use the equations of state for the grand potential (as is easily visible from Eq. 4.1)
to obtain the chemical potential µR of the reservoir. Since we expect that in chemical equilibrium, the chemical
potential of the reservoir will set the chemical potential of the subsystem as well, we can make the identification
that µR = µ. Finally, we rid ourselves of the reservoir entropy by using the additivity of entropy as:

ST (ET , NT ) = SR(ET − ⟨E⟩ , NT − ⟨N⟩) + S(⟨E⟩ , ⟨N⟩) (4.7)

Combining this with our new expansion for the entropy of the reservoir, we return to compute the grand
canonical probability as:

PNS ,α =
exp

[
SR(ET−⟨E⟩,NT−⟨N⟩)

kB

]
exp

[
⟨E⟩−ENS ,α

kBT

]
exp

[
−µ(⟨N⟩−NS)

kBT

]
exp

[
SR(ET−⟨E⟩,NT−⟨N⟩)

kB

]
exp

[
S(⟨E⟩,⟨N⟩)

kB

]
= exp

(
⟨E⟩ − TS − µ ⟨N⟩

kBT

)
exp

(
−ENS ,α

kBT

)
exp

(
µNS

kBT

)
= exp (βΦ) exp (−βENS ,α) exp (βµNS) (4.8)

Finally, we impose the normalisation condition on this grand canonical probability:

∑
NS

∑
α

exp (βΦ) exp [−β(ENS ,α − µNS)] = 1

=⇒
∑
NS

∑
α

exp [−β(ENS ,α − µNS)] = exp (−βΦ) = Z(T, V, µ) (4.9)

which finally returns us the object Z(T, V, µ)14, known as the grand canonical partition function, or grand
partition function. In an incredibly theatric and humble manner, I wish to convey that this is truly the most
powerful function in statistical mechanics (in my honest opinion). While it looks like we just repeated the
procedure for the derivation of the canonical ensemble, now allowing for a new type of exchange between the
system and bath, the physical implications run far deeper. Let’s explore some of that first before we delve into
the thermodynamics of things.

The grand canonical probability provides the relative probability of occupying a microstate α with energy
Eα and particle number Nα. In writing the grand partition function which sums over all of these terms, it is
wiser to interpret these two sums as follows:

1. Fix N first.
14This is why I typically don’t cross my Z’s, because I reserve that for the grandest of partition functions. A good number of texts (and

the way I was taught) uses the symbol Q(T, V,N) for the canonical partition function so that we have Z(T, V, µ) for the grand partition
function, but I am trying to stick with the same terminology as the class as best I can.
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2. Sum over all microstates α which are available for that N .

3. Iterate over all values of N .

Mathematically, this is written as:

Z(T, V, µ) =
∑
α

e−βEα+βµNα

=
∑
N

∑
α

e−βEα+βµNδN,Nα

=
∑
N

eβµN
∑
α

e−βEαδN,Nα

=
∑
N

eβµNZ(T, V,N) (4.10)

where I now include the Kronecker delta in the canonical partition function to explicitly demand that
particle numbers are fixed in the canonical ensemble. This form tells us that the grand partition function
is really just a weighted sum of canonical partition functions! We can also go the other way, extracting a
canonical partition at some fixed particle number from a grand partition function, though this requires some
careful work. We first define the quantity z = eβµ, known as the fugacity. With this, the grand partition
function is written as a power series expansion:

Z(T, V, µ) =
∑
N

eβµNZ(T, V,N)

=
∑
N

zNZ(T, V,N) (4.11)

where the canonical partition functions Z(T, V,N) are the coefficients, and Z(T, V, µ) is expanded in pow-
ers of the fugacity. We thus use the standard method of extracting the coefficients of a Taylor series to obtain
the canonical partition function for some desired particle number N0:

Z(T, V,N0) =
1

N0!

[(
∂

∂z

)N0

Z(T, V, µ)

]∣∣∣∣∣
z=0

(4.12)

To truly demonstrate why I prefer the grand partition function, we need to consider the fact that a large
number of the systems we have studied (and will study) have discrete energy levels15. Furthermore, when
we work in the regime of indistinguishability whereby the constituent particles which take on those discrete
energies cannot be distinguished from one another, counting microstates becomes tough. That is, when we
cannot tell particles apart from one another, then assigning specific energy levels to specific particles loses its
meaning as a process. Instead, it is physically more meaningful to count the number of particles occupying a
given energy level, from which the total energy of the system is easily obtained. This is pictorially represented
in Fig. 6.

To convey the difficulty of the particle labelling procedure in the indistinguishable case, suppose we have
a collection of N identical particles, each of which can have some energy ϵi. We also assume that this gas
of particles is held at some temperature T through coupling to a heat reservoir, but there is no exchange of
particles allowed, so N is constant. The canonical partition function is:

15This argument would probably break down if this were Bill’s biophysics class, so please take all of this with an entire shaker of salt.
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FIGURE 6: Counting Distinguishable vs. Indistinguishable Particles. (Left) When the constituent particles are distin-
guishable from one another, we can assign specific energies to each particle. (Right) When the particles are identical (or
sufficiently indistinguishable), it is more justified to instead count the number of particles occupying each energy level.

Z(T, V,N) =
∑
{ni}

e−β
∑

j ϵjnjδN,
∑

j nj

=

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nj=0

· · · e−β
∑

j ϵjnjδN,
∑

j nj
(4.13)

The first sum is over all possible occupancy distributions {ni} of the various energy levels, and the Kro-
necker delta ensures that all of these occupancies sum up to N . Thus, when the configurational sum for {ni}
is expanded in the second line, not all of the sums are independent since the Kronecker delta will eliminate
one of them. This situation is made even worse if there are limits on the number of particles within each en-
ergy level, such as when the particles are fermions (then only a maximum of one particle can occupy a single
state). Instead, if we view each energy level as an open system which exchanges particles (and heat) with a
larger reservoir that is our closed system, and have our closed system fixed at some temperature through heat
exchange with a reservoir (all within an isolated system) the situation becomes a lot simpler!16 Suppose, for
now, that there is no restriction on the number of particles which can occupy a given energy level (so these
particles are bosons), the grand partition function of each energy level is then:

Zi =

∞∑
ni=0

e−βni(ϵi−µ) (4.14)

Knowing that the partition function for a system comprised of subsystems is simply the product of the
individual partition functions, we can easily combine all the energy levels’ partition functions to obtain:

Z(T, V, µ) =

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

ni=0

· · · e−β
∑

i ni(ϵi−µ)

=
∏
i

∞∑
ni=0

e−βni(ϵi−µ)

=
∏
i

1

1− e−β(ϵi−µ)
(4.15)

16Sorry this sentence was a massive chunk, I hope the illustration helps. This whole process of nesting systems feels a lot like the SNL
Taco Town skit from 2005.
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where we are able to evaluate the sum since all energy levels are coupled to the same particle bath, so
the chemical potentials of all energy levels at equilibrium must all be the same. Note that we do not need to
impose the particle number constraint here since N is no longer fixed in the grand canonical ensemble. Instead,
the particle number N is determined using the equation of state for the grand potential, through which a fixed
particle number constraint can later be imposed by tuning the new canonical variables (T, V, µ).

FIGURE 7: Closed Systems as Interacting Open Systems. When the constituent particles of a closed system are indistin-
guishable from one another, it is preferable to work in the basis of occupation numbers for the various energy levels. Here,
we consider each energy level as an open system, able to exchange heat and particles with the closed system as a reservoir.
In this manner, the partition function of the entire system is better studied by considering the grand partition functions of
the constituent energy levels, rather than the single canonical partition function of the closed system.

4.2 Grand Canonical Thermodynamics

We first consider the average/expected particle number in the grand canonical ensemble through:

⟨N⟩ =
∑
α

PαNα

=

∑
α Nαe

−βEα+βµNα

Z

=

∑
N NzNZ(T, V,N)∑
N zNZ(T, V,N)

=
1

β

(
∂ logZ
∂µ

)
T,V

= −
(
∂Φ

∂µ

)
T,V

(4.16)

The particle number fluctuations can similarly be computed:

〈
(∆N)

2
〉
=
〈
(N − ⟨N⟩)2

〉
=
〈
N2
〉
− ⟨N⟩2

=
1

β2

1

Z

(
∂2Z
∂µ2

)
T,V

− 1

β2

1

Z2

(
∂Z
∂µ

)2

T,V

=
1

β2

(
∂2 logZ
∂µ2

)
T,V

=
1

β

(
∂ ⟨N⟩
∂µ

)
T,V

(4.17)
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In a similar fashion to the energy fluctuations in the CE, we see that the relative fluctuations scale as:√〈
(∆N)

2
〉

⟨N⟩
∼ 1√

N
(4.18)

which is incredibly small for a thermodynamically large system, and so we expect only a very small range
of particle numbers meaningfully contribute to the actual computation of expectation values. Interestingly,
this is not always true in the grand canonical ensemble, specifically close to a phase transition. In the vicinity
of a phase transition, large (comparable to N ) numbers of particles can suddenly enter or leave a given energy
level, resulting in macroscopic particle number fluctuations. It also turns out that this has a significant effect
on the energy fluctuations. For this, we revisit the expression from Eq. 3.14, but now take the partial derivative
at constant T , V , µ instead:

〈
(∆E)

2
〉
= −

(
∂ ⟨E⟩
∂β

)
V,µ

= kBT
2

(
∂ ⟨E⟩
∂T

)
V,µ

= kBT
2

[(
∂ ⟨E⟩
∂T

)
V,N

+

(
∂ ⟨E⟩
∂ ⟨N⟩

)
T,V

(
∂ ⟨N⟩
∂T

)
V,µ

]
(4.19)

where we interchangably use N = ⟨N⟩ since it is understood that these are generally the same quantity
away from critical points. Now, we note that the opposite derivatives of the mean particle number and energy
produce: (

∂ ⟨N⟩
∂T

)
V,µ

=
1

T

(
∂ ⟨E⟩
∂µ

)
T,V

(4.20)

using Schwarz’ theorem. Plugging this into the expression for the energy fluctuations, we arrive at:

〈
(∆E)

2
〉
= kBT

2

(
∂ ⟨E⟩
∂T

)
V,N

+ kBT

(
∂ ⟨E⟩
∂ ⟨N⟩

)
T,V

(
∂ ⟨E⟩
∂µ

)
T,V

= kBT
2

(
∂ ⟨E⟩
∂T

)
V,N

+ kBT

[(
∂ ⟨E⟩
∂ ⟨N⟩

)
T,V

]2(
∂ ⟨N⟩
∂µ

)
T,V

= kBT
2CV + kBT

[(
∂ ⟨E⟩
∂ ⟨N⟩

)
T,V

]2 〈
(∆N)

2
〉

(4.21)

where in the second line, we use the chain rule to re-obtain the partial derivative of the particle number,
before re-invoking Eq. 4.17 in the last line. This tells us that the typical energy fluctuations in the grand
canonical ensemble contain the same heat capacity contribution from the canonical ensemble, but now also
include a contribution from the fluctuations in particle numbers. Under normal circumstances, this fluctuation
would scale as 1/

√
N and be highly suppressed, but this can show macroscopic deviations in the vicinity of a

phase transition through the second term17. Finally, we can also link Eq. 4.1 and Eq. 4.9 to write expressions
for the three equations of state:

17While we did interchangably use N and ⟨N⟩ in this derivation, this relation turns out to be general, and works even in the vicinity of
a critical point (near a phase transition). The proof of this is too elusive for me for now.
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S(T, V, µ) = −
(
∂Φ

∂T

)
V,µ

(4.22)

p(T, V, µ) = −
(
∂Φ

∂V

)
T,µ

(4.23)

N(T, V, µ) = −
(
∂Φ

∂µ

)
T,V

(4.24)

4.3 Two-Level Systems in the GCE

Let us now return to the toy model of the two-level systems again18, and attempt to construct the problem in
the grand canonical ensemble. The setup is essentially the same as before, only now we can relax the restric-
tion on the fixed number of classical spins. We thus simply have a collection of identical, weakly-interacting
classical spins. Each particle occupies a non-degenerate energy level given by Eq. 2.18. The microstates are still
described by a set of values {ni} ≡ α, only now the length of this set is unspecified. We construct the grand
partition function by simply using the result from the CE for a fixed number N , and write a series expansion
in the fugacity as:

Z(T, µ) =

∞∑
N=0

zNZ(T,N)

=

∞∑
N=0

eβµN
[
eβϵ + e−βϵ

]N
=

1

1− 2eβµ cosh(βϵ)
(4.25)

This gives us the grand potential simply as:

Φ(T, µ) = −kBT logZ(T, µ)

= kBT log
[
1− 2eβµ cosh(βϵ)

]
(4.26)

4.4 Three Ensembles Playing the Same Piece

Through the course of this review, we constructed three different (but related) statistical ensembles for solving
various types of statistical mechanics problems. As examples, I demonstrated how we could approach the
situations of two-level systems and harmonic oscillators in all three ensembles. At this point, you are probably
sick of those examples (as am I) and may have had the natural question of how they could possibly be related
given how different the expressions look and how we are holding different quantities constant in each ensem-
ble. In this section, I aim to convince you that we have really been telling three versions of the exact same story,
and we can mathematically show (in a simple enough situation, such as the two-level systems) that this is the
case. For convenience, we restate the primary expression in the natural potential for all three ensembles:

18I have chosen not to revisit the harmonic oscillators in the GCE as it is a simple exercise, and explicitly typing it out does not add
much more value to the discussion than simply revisiting some algebra.
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S(E,N) = −NkB
2

(
1 +

E

Nϵ

)
log

[
1

2

(
1 +

E

Nϵ

)]
− NkB

2

(
1− E

Nϵ

)
log

[
1

2

(
1− E

Nϵ

)]
(4.27)

F (T,N) = −NkBT [log 2 + log cosh (βϵ)] (4.28)

Φ(T, µ) = kBT log
[
1− 2eβµ cosh(βϵ)

]
(4.29)

Firstly, the statistical ensembles gain their true power in the thermodynamic limit, so we should expect
that these constructions will only agree in the N → ∞ limit. To put them on common ground, we will turn our
attention to the specific entropy, or the entropy per particle, in each of these ensembles. Mathematically, this
is written as:

s ≡ lim
N→∞

S

⟨N⟩
(4.30)

We now define the quantity x = E
Nϵ as the dimensionless energy, and start with the microcanonical en-

semble:

S(E,N) = −NkB
2

(1 + x) log

[
1

2
(1 + x)

]
− NkB

2
(1− x) log

[
1

2
(1− x)

]
s = kB

[
log 2− 1

2
(1 + x) log (1 + x)− 1

2
(1− x) log (1− x)

]
(4.31)

This is the expression we should obtain from the other two ensembles. We now proceed with the canonical
ensemble. Since we have to obtain the entropy, which is easily obtained from F , we first get an expression for
the mean energy:

⟨E⟩ = −
(
∂ logZ

∂β

)
N

= −Nϵ tanh (βϵ)

=⇒ x = − tanh(βϵ)

=⇒ βϵ =
1

2
[log(1− x)− log(1 + x)] (4.32)

Plugging this back into the mean energy, we get a self-consistent equation:

⟨E⟩ = NkBT

2
x[log(1− x)− log(1 + x)] (4.33)

This gives us our bridge to the entropy expression, which we (with a little intermediate work that I am
skipping)19 write as:

S =
⟨E⟩ − F

T
= NkB

[
log 2− 1

2
(1 + x) log (1 + x)− (1− x) log (1− x)

]
=⇒ s = kB

[
log 2− 1

2
(1 + x) log (1 + x)− 1

2
(1− x) log (1− x)

]
which agrees with the microcanonical result! We finally turn to the grand canonical ensemble, and note

that we now also have to find the mean particle number since this is no longer fixed. The mean energy and
particle number are thus found through the appropriate derivatives of the grand potential:

19I promise it’s not difficult, it’s just a bit of manipulation using logarithms and hyperbolic functions. Typing it out is incredibly
cumbersome.

25



⟨N⟩ = −
(
∂Φ

∂µ

)
T,V

=
eβµ
(
eβϵ + e−βϵ

)
1− eβµ(eβϵ + e−βϵ)

(4.34)

⟨E⟩ = β

(
∂Φ

∂β

)
V,µ

=
eβµ
(
eβϵ − e−βϵ

)
1− eβµ(eβϵ + e−βϵ)

ϵ (4.35)

From this, we solve for βϵ and βµ (this is probably the hardest step, and requires a couple pages of math-
ematical gymnastics which I’d recommend skipping if you’re short on patience):

βϵ = 1
2 [log(1− x)− log(1 + x)]

βµ = log
(

⟨N⟩
⟨N⟩+1

)
− log 2 + 1

2 [log(1− x)− log(1 + x)]
(4.36)

=⇒

⟨E⟩ = ⟨N⟩ ϵx

Φ = −kBT log (⟨N⟩+ 1)
(4.37)

Finally, we insert this back into the expression for the entropy as obtained from the definition of the grand
potential in Eq. 4.1:

S =
⟨E⟩ − µ ⟨N⟩ − Φ

T

= ⟨N⟩ kB
[
log(⟨N⟩+ 1)

⟨N⟩
+ log

(
1 +

1

⟨N⟩

)
+ log 2− 1

2
(1 + x) log (1 + x)− (1− x) log (1− x)

]
=⇒ s = kB

[
log 2− 1

2
(1 + x) log (1 + x)− 1

2
(1− x) log (1− x)

]
which agrees with the microcanonical result in the thermodynamic limit! We thus see that all three en-

sembles were describing the exact same physical picture, and this is best reconciled through the entropy per
particle. In my personal opinion, this demonstration is beautiful in that it shows why entropy is pretty much
the most fundamental thermodynamic potential (despite the others being equivalent to it), in that it carries a
great deal of easily extractable meaning.

Now that we’ve shown the equivalence of the three ensembles in producing the same entropy per particle
(in the thermodynamic limit), let’s unpack the expression a little further. From Eq. 4.31, we first regroup the
constant log 2 term with the other two, which brings it into better agreement with the original form from the
microcanonical ensemble. This is easily done by writing:

log 2 = (1 + x) log 2 + (1− x) log 2

=⇒ s = −kB

[
1 + x

2
log

(
1 + x

2

)
+

1− x

2
log

(
1− x

2

)]
(4.38)

Now, the setup of the problem tells us that E is bounded from below by −Nϵ and bounded above by Nϵ.
This implies that x ∈ [−1, 1]. Enacting a simple variable transformation of the form p = (1 + x)/2, we obtain:

s = −kB [p log p+ (1− p) log(1− p)] (4.39)

This is just the Gibbs entropy of a system with two states of probability p and (1 − p) respectively! The
probability p(E,N) here is explicitly stated in terms of the energy E and particle number N , while we are
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typically more used to seeing this in terms of the Boltzmann factor exp(−β∆), where ∆ is the splitting between
the energy levels. This is simply reconciled by considering the relative probability:

p

1− p
=

1 + x

1− x
=

1− tanh(βϵ)

1 + tanh(βϵ)
= e−2βϵ (4.40)

which is exactly the Boltzmann factor we expect for two states of energies ±ϵ! Incredible stuff Boltzmann
and Gibbs, your work continues to astound us even today.

5 The Continuous Ensembles

Over the last 25 or so pages, I have demonstrated the construction and use of the various statistical ensembles
for some case studies. However, I did start this by waxing poetic about Hamiltonian mechanics and phase
space, though we never used any of that knowledge in the preceding discussion of the statistical ensembles.
This is because our previous discussions were solely focused on discrete problems, with energies dependent
on some discrete quantity (such as ni as the energy level label). Since there is no way to define a canonical
momentum conjugate for this discrete quantity20, it is not possible to construct a phase space and use the ideas
of Hamiltonian mechanics for such discrete problems. In this section, we will finally make use of those initial
ideas, turning to the continuous formulation of all the ensembles we have previously seen. Through this, we
will study the classical ideal gas in the framework of statistical mechanics and hope to reconcile the notions
we are used to from thermodynamics.

5.1 Density of States

Earlier in the MCE, we defined Ω(E) as the number of microstates of a system with energy between (E − δE)

and E, where δE can be made sufficiently small compared to the precision of the instrumentation used to
measure the energy. Then, we can essentially consider all states under consideration for Ω(E) to be of the
same energy.

Now, we can also consider the number of microstates with energy less than or equal to E, denoted by Σ(E).
Intuitively, we expect that Σ(E) is going to be a non-decreasing function of E, and any increase in Σ(E) for
increasing E represents a counting of sorts in the total number of microstates lying between E and E+ δE. We
thus consider the following:

Ω(E) = Σ(E)− Σ(E − δE)

≈ ∂Σ(E)

∂E
δE

= g(E) δE (5.1)

where we have defined a new quantity g(E) = ∂Σ(E)/∂E , known as the density of states. The density
of states effectively counts the phase space density of microstates that reside within an energy shell centred at
E, and of thickness δE. That is, this represents the number of microstates we expect per unit energy, at a given
energy. Since we have imposed that δE can be made arbitrarily small to lie within the precision of the probing

20While it is true that continuum mechanics actually arises from discretisation in the limit of sufficiently small spacing, this limit is
justified since we can insert points in position and momentum space to subdivide the space at will, eventually taking the continuum limit.
This is not possible in our discrete problems such as the two-level systems and harmonic oscillators, since the energy levels are clearly
defined.
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instrument, the density of states can also be understood as the degeneracy of a given energy in a continuous
setting.

5.2 The Classical MCE

To construct the microcanonical ensemble in a continuous setting, we need to take a more careful look at how
the ensemble resides in phase space. Particularly, we need a way to count states in a continuous fashion, if this
is possible at all. We first formalise the definition of a phase space volume V , and distinguish it from a real
space volume V as:

V =
∏
i

∫
dqi dpi = V

∏
i

∫
dpi (5.2)

Thus, the phase space volume is a product of a real volume and a volume in momentum space, with
the region within the volume defined by the bounds placed on the canonical coordinates q and the canonical
conjugate momenta p21. Now, as in the discrete case, we wish to obtain the microcanonical probability by
selecting only a specific portion of phase space corresponding to the energy under consideration in the micro-
canonical ensemble. We begin by specifying some energy E0 and selecting only the volume of phase space
which corresponds to that energy:

V(E0) =

∫
dq dp δ(E − E0) (5.3)

where the Dirac delta is enforced through the fact that the energy E is a function of (q,p). For a system
whose energy is conserved, we can impose that E0 = H(q,p), where H is the Hamiltonian of the entire N -
particle system. Thus, when an energy is specified for an N -particle system in continuous phase space, we
have the phase space volume per unit energy as:

gph(E) =

∫
dq dp δ(E −H(q,p)) (5.4)

The subscript ‘ph’ here distinguishes this as a phase space volume, rather than a dimensionless count of
states as in the case of the density of states from before. In this continuous phase space, we know that the
microcanonical probability distribution takes on the form of a probability density ρmc(q,p). Now that we
have isolated the region of interest for a given energy E, we need to simply ensure that the microcanonical
probability density is evenly distributed over this region to obey Boltzmann’s postulate. Knowing that the
microcanonical probability should be uniform within the energy shell at E and vanish everywhere else, we
expect something of the form:

ρmc(E;q,p) = λδ(E −H(q,p)) (5.5)

where λ is a normalisation factor to be determined. Imposing the normalisation condition tells us that:

1 =

∫
dq dp ρmc(q,p) =

∫
dq dpλδ(E −H(q,p))

=⇒ λ =

[∫
dq dp δ(E −H(q,p))

]−1

=
1

gph(E)

21Recall from the first section that the vectors q and p are 3N -dimensional objects which specify the positions and momenta of all
particles in the system.
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FIGURE 8: Phase Space Volume and Volume Density in the Continuous Ensembles. The grey shaded region represents
the volume of phase space contained within the energy shell at E, with thickness δE (not indicated on the diagram), while
the blue shaded region represents the volume of phase space with energies up to E. Note that the blue shaded region
actually overlaps with the grey, but I have not done so to make it clearer to distinguish. All of phase space with energy
larger than E is unshaded, since this region is not counted in either quantity. Furthermore, as all realistic Hamiltonians are
convex in the canonical coordinates and momenta, we can define a directionality to the process of increasing E. That is,
the shell gph(E) is never expected to demonstrate any bubbles or inward bumps, so there is always a well defined outward
direction corresponding to increasing energy.

This provides us with the microcanonical probability density function as22:

ρmc(E;q,p) =
1

gph(E)
δ(E −H(q,p)) (5.6)

It is also worth considering the expression for the phase space volume with energy less than or equal to E,
analogous to Σ(E) from before. This is:

Σph(E) =

∫
H(q,p)≤E

dq dp

=

∫
dq dp θ(E −H(q,p)) (5.7)

where we use the Heaviside theta function θ(x) to count all states with energy H ≤ E. It is often far
easier to count the number of states up to a certain energy by imposing the Heaviside theta this integral,
then differentiate Σ(E) to obtain g(E), rather than to try imposing the Dirac delta in Eq. 5.11 directly. A brief
visualisation of both these quantities are shown in Fig. 8.

Now, we need to introduce some quantum mechanical ideas before things get out of hand. In phase
space, we currently have a volume which satisfies certain energy requirements, and this volume is used to
construct the microcanonical ensemble of interest. This volume, however, turns out to be a flawed notion due
to quantum mechanics. Specifically, Heisenberg’s uncertainty principle tells us that simultaneous knowledge

22It should be noted at this point that it is quite meaningless in a physical sense to write ρmc on its own, and we should always interpret
this as ρmc dq dp, which is the total probability within some infinitesimal phase space volume.
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FIGURE 9: Trajectory of a System through Phase Space Cells. Subdividing phase space into unit cells of side length
(2πℏ) along each axis (and there are 6N of them in total), we see that the trajectory of a system through phase space is
simply a path which visits all states on an energy shell equally as often. In the ergodic equivalent, we say that any of these
cells are equally likely to be occupied. Another way to view the imposition of the uncertainty principle is that along the
trajectory, we have to make some measurement over a finite amount of time. In trying to keep the energy shell arbitrarily
thin (δE), we cannot make an arbitrarily short measurement, and so the system would have travelled some significant
distance through phase space in that time. This ‘blurs’ out any instantaneous sampling of a phase space trajectory into a
distribution. Adapted from [4].

of the exact position and momentum of a particle is impossible, and is instead constrained by the following
inequality:

∆x∆p ≥ h = 2πℏ (5.8)

with the right hand side being true up to a multiplicative factor. Thus, any set of states in phase space that
are separated by coordinates and momenta with a product less than 2πℏ23 correspond to the same measurable
microstate. We can then denote the smallest meaningful volume of phase space24, known as the phase space
unit cell, by (∆q)(∆p) = (2πℏ)3N . That is, every distinguishable microstate occupies a minimal phase space
volume of (2πℏ)3N . This is our link from the continuous ensemble to the discrete ideas from before!

We now note that the phase space unit cell allows us to explicitly count multiplicities as follows:

Ω(E0) =
V(E0)

(2πℏ)3N
(5.9)

This enables us to finally convert the phase space volume Σph(E) and volume density gph(E) into a mul-
tiplicity and a multiplicity density according to:

23One may be wondering why I keep using 2πℏ rather than simply h in each of these appearances. My training comes from atomic
physics and quantum gases, so I firmly believe that the reduced Planck’s constant is a more meaningful quantity due to its connection with
oscillatory two-level systems, as in the school of I.I. Rabi. If in a position of sufficient power, I would define 1

2
as the reduced Archimedes’

constant (Yes, I will die on this hill).
24It might seem incredibly strange that this entire classical discussion has an appearance of ℏ in it at all, but this really shouldn’t surprise

you. I honestly think David Tong put it best when he explained this appearance – “. . . it is a vestigial object, like the male nipple. It is
redundant, serving only as a reminder of where we came from. And the classical world came from the quantum.”
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Σ(E) =
Σph(E)

(2πℏ)3N
=

1

(2πℏ)3N

∫
dq dp θ(E −H(q,p)) (5.10)

g(E) =
gph(E)

(2πℏ)3N
=

1

(2πℏ)3N

∫
dq dp δ(E −H(q,p)) (5.11)

which count the number of microstates of energy up to E and the number density of microstates per unit
energy at E respectively. This provides us with the machinery we need to perform actual computations in the
microcanonical ensemble.

5.3 The Classical Ideal Gas in the MCE

Let us now consider the simplest possible continuous ensemble construction that we can – the classical ideal
gas in a box. In the ideal gas, the Hamiltonian simply has a kinetic energy term for each particle, and no
potential energy (since the ideal gas is non-interacting). The Hamiltonian is thus written as:

H(q,p) =

3N∑
j=1

p2j
2m

(5.12)

With the Hamiltonian, we can now explicitly write the total number of microstates Σ(E) up to and includ-
ing the energy E25:

Σ(E) =
1

(2πℏ)3N

∫
dq dp θ

E −
3N∑
j=1

p2j
2m


=

1

(2πℏ)3N

[
N∏
i=1

∫
dqi

]∫
dp θ

E −
3N∑
j=1

p2j
2m


=

V N

(2πℏ)3N

∫
dp θ

E −
3N∑
j=1

p2j
2m

 (5.13)

where we recognise that the integral of a particle’s position over all coordinate values simply returns the
volume of the box, for which we get N copies of V . To deal with the integrals over the momenta, we first make
the variable transformation y2j = p2j/2mE. This simplifies the variable in the Heaviside theta and reduces the
need for any special treatment later on. We have:

Σ(E) =
V N

(2πℏ)3N

∫
dp1 · · · dp3N θ

E −
3N∑
j=1

p2j
2m


=

V N

(2πℏ)3N
(2mE)3N/2

∫
dy1 · · · dy3N θ

1−
3N∑
j=1

y2j

 (5.14)

where we now get 3N copies of the factor
√
2mE out front from the change of variables. The remain-

ing integral has an interesting geometric interpretation – it is simply the volume of the unit 3N -dimensional
hypersphere26! The volume of the unit n-dimensional hypersphere is easily given by:

25There’s going to be a lot of subtle notational changes here, so pay attention! q is a 3N -dimensional object detailing the three position
coordinates of all N particles, qi is a three-dimensional object detailing the three position coordinates of the i-th particle only (there are N

of these) and qi is the i-th position coordinate (there are 3N of these in total).
26It’s worth taking as much time as you need to convince yourself that this is true.
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Vn =
πn/2

Γ
(
n
2 + 1

) (5.15)

Plugging this into Eq. 5.14 quickly returns:

Σ(E, V,N) =
V N

(2πℏ)3N
(2mE)3N/2 π3N/2

(3N/2)!

= V N E3N/2

(3N/2)!

( m

2πℏ2
)3N/2

(5.16)

With this expression for Σ(E), we proceed to obtain the density of states through a simple derivative:

g(E, V,N) =
∂Σ(E)

∂E

= V N

(
3N

2

)
E3N/2−1

(3N/2)!

( m

2πℏ2
)3N/2

= V N E3N/2−1

(3N/2− 1)!

( m

2πℏ2
)3N/2

(5.17)

This gives us the multiplicity as:

Ω(E, V,N) = g(E, V,N)δE

= V N E3N/2−1

(3N/2− 1)!

( m

2πℏ2
)3N/2

δE

= V N E3N/2

(3N/2)!

( m

2πℏ2
)3N/2 3N

2

δE

E
(5.18)

where we quickly realise that it was a waste of time to simplify the previous derivative. Finally, with the
multiplicity, we can compute the entropy:

S(E, V,N) = kB log Ω(E, V,N)

= kB

[
N log V +

3N

2
logE − log

(
3N

2

)
! +

3N

2
log
( m

2πℏ2
)
+ log

(
3N

2

δE

E

)]
≈ kB

[
N log V +

3N

2
logE − 3N

2
log

(
3N

2

)
+

3N

2
+

3N

2
log
( m

2πℏ2
)
+ log

(
3N

2

δE

E

)]
≈ NkB

[
log V +

3

2
log

(
E

N

)
+

3

2
log
( m

3πℏ2
)
+

3

2

]
(5.19)

where in the last line, we drop the last term containing log(δE/E). This is because it is a factor of N

smaller than all the other terms, and so it will become incredibly small in the thermodynamic limit and can be
neglected.

ALERT ALERT ALERT ALERT ALERT
Now that I have your attention, allow me to tell you that Eq. 5.19 is wrong, in that it grossly overestimates

the entropy of the ideal gas! A simple way to see this is to consider the extensivity of the entropy, that is, we
expect that the entropy should scale up in a manner like:
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S(λE, λV, λN) = λS(E, V,N) (5.20)

where λ is some multiplicative factor which scales the system. In Eq. 5.19, this is mostly satisfied except
in the log V term, which simply pulls out an awkward log λ term. It turns out that the root of our mistake lies
in the initial counting of the states itself. When we write the multiplicity Ω, we need to account for the fact
that the particles in the ideal gas are indistinguishable from one another, so the permutations of the particles
in phase space do not contribute unique microstates. Thus, we can easily resolve this mistake by inserting the
correct Boltzmann counting factor as Ω −→ Ω/N !. Now, we re-evaluate the entropy with this modification:

S(E, V,N) = kB

[
N log V − logN ! +

3N

2
logE − log

(
3N

2

)
! +

3N

2
log
( m

2πℏ2
)
+ log

(
3N

2

δE

E

)]
≈ NkB

[
log

(
V

N

)
+

3

2
log

(
E

N

)
+

3

2
log
( m

3πℏ2
)
+

5

2

]
(5.21)

where we apply Stirling’s approximation to tame the new factorial term. This is known as the Sackur-
Tetrode equation. It is extensive as required, since every appearance of E and V is paired with a reciprocal
factor of N , leaving only the overall factor of N out front for the extensivity! This is our fundamental equation
in the entropy representation, and all thermodynamic quantities of interest can be derived from here through
appropriate derivatives. As a demonstration, let’s obtain the three equations of state, starting with the inverse
temperature:

1

T
=

(
∂S

∂E

)
V,N

=
3

2
NkB

1

E
=⇒ E =

3

2
NkBT (5.22)

which is the expected result from the equipartition theorem27! Next, let’s obtain the pressure equation of
state:

p

T
=

(
∂S

∂V

)
E,N

=
NkB
V

=⇒ pV = NkBT (5.23)

which is the famous ideal gas equation that we are used to! Finally, we can also obtain the chemical
equation of state (for studying the change in particle number):

µ

T
= −

(
∂S

∂N

)
E,V

= −kB log

[
V

N

(
m

3πℏ2
E

N

)3/2
]
=⇒ µ = −kBT log

[
V

N

(
m

3πℏ2
E

N

)3/2
]

(5.24)

We’ve already dealt with the fact that ℏ appearing in the classical ideal gas fundamental equation is accept-
able, but isn’t it strange that ℏ then only proceeds to appear in one of the three equations of state? Specifically,
the temperature and pressure equations look classical while the chemical equation of state contains the appear-
ance of ℏ as well as m, which is a microscopic specification of the constituent gas particles. The following is
speculation – I believe this may be because the chemical potential tells us about the amount of energy required
to insert a new particle whilst keeping the energy and volume of the gas constant. Normally, this isn’t an
issue28 in the microcanonical ensemble, but we start to get ridiculous results in the quantum mechanical limit.
Firstly, let’s plug the temperature equation of state into the chemical equation of state to write:

µ = −kBT log

[
V

N

(
mkBT

2πℏ2

)3/2
]
= −kBT log

(
V

NΛ3

)
(5.25)

27It’s alright if you haven’t seen or heard of that theorem before, this should at least look familiar as the constant-volume heat capacity
of an ideal gas in three dimensions.

28Experimentally, this is a nightmare, but let’s pretend the extent of our lab is a chalk and a chalkboard.
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where we define the quantity Λ =
√
2πℏ2/mkBT known as the thermal de Broglie wavelength, or simply

the thermal wavelength. This represents the typical de Broglie wavelength of a particle in an ideal gas at the
temperature T . The thermal wavelength then sets a scale on the temperature T for which quantum effects
become relevant, through its relative size to the mean interparticle spacing and the size of the containing box
itself. Once the thermal wavelength becomes on the order of the mean free spacing between the particles
( 3
√

V/N ), quantum mechanical effects such as the symmetrisation or antisymmetrisation of the wavefunctions
become important enough to make our ideal gas approximation break down. In the regime that quantum
effects start to become important, we see that the chemical potential becomes strongly negative, suggesting
that the addition of new particles can lower the energy of the gas. This is clearly wrong for a gas of fermions,
since the Pauli exclusion principle tells us that adding particles into occupied states should be impossible. This
is not the only strange result, for instance, if we were to rewrite the entropy per particle from Eq. 5.21 using
the temperature equation of state, we have:

s(T, V ) =
S(T, V,N)

N
= kB

[
log

(
V

N

)
+

3

2
log

(
mkBT

2πℏ2

)
+

5

2

]
(5.26)

This clearly exhibits a logarithmic singularity in the low temperature limit, implying that the entropy per
particle tends to −∞ as the temperature of the gas is lowered to absolute zero. This is clearly rubbish since it
violates the Nernst statement of the third law of thermodynamics, which tells us that any system being taken
to absolute zero must have its entropy tend toward a finite constant. This is why the study of the classical ideal
gas can only be done at reasonably high temperatures, since there is a temperature below which the entire
notion of an “ideal” gas breaks down and we have to accept that reality truly is quantum.

5.4 The Classical Ideal Gas in the CE

Assuming for now that we are far from the quantum realm, we now want to revisit the classical ideal gas
in the canonical ensemble. For this, we need to construct the canonical probability density function ρc. The
probability distribution should take on a similar form to the discrete canonical probability, in that it should
simply apply a Boltzmann factor to weight the probability using the energy of a microstate. We can thus
immediately write the canonical probability distribution as:

ρc(q,p) =
1

(2πℏ)3N
1

Z(T, V,N)
exp [−βH(q,p)] (5.27)

where Z(T, V,N) =
1

(2πℏ)3N

∫
dq dp exp [−βH(q,p)] (5.28)

A simple interpretation of this distribution is that we simply take the canonical probability e−βE to be the
volume of phase space occupied by a microstate in this ensemble, then divide by the phase space unit cell to
obtain a multiplicity of sorts. The partition function Z then enters as a normalisation factor once again.

We now apply this to the classical ideal gas, with the same Hamiltonian as before in Eq. 5.12. The partition
function is constructed as:
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Z(T, V,N) =
1

N !

1

(2πℏ)3N

[
N∏
i=1

∫
dq

][∫
dp exp

(
−β

3N∑
i=1

p2i
2m

)]

=
1

(2πℏ)3N
V N

N !

[∫
dpi exp

(
−βp2i
2m

)]3N
=

1

(2πℏ)3N
V N

N !
(2πmkBT )

3N/2

=
V N

N !

(
mkBT

2πℏ2

)3N/2

(5.29)

From this, we can easily compute the Helmholtz free energy:

F (T, V,N) = −kBT logZ

= −kBT

[
N log V − logN ! +

3N

2
log

(
mkBT

2πℏ2

)]
= −NkBT

{
log

[
V

N

(
mkBT

2πℏ2

)3/2
]
+ 1

}
(5.30)

which gives us everything we need to compute the equations of state! Let’s go ahead and do so, starting
with the entropy:

S(T, V,N) = −
(
∂F

∂T

)
V,N

= NkB

[
log

(
V

N

)
+

3

2
log

(
mkBT

2πℏ2

)
+

5

2

]
(5.31)

This is the Sackur-Tetrode equation in the Helmholtz representation, and is also the exact same result that
we obtained above in the microcanonical ensemble! The pressure equation of state is also easily obtained as:

p(T, V,N) = −
(
∂F

∂V

)
T,N

=
NkBT

V
=⇒ pV = NkBT (5.32)

which is the ideal gas equation that we expect! Lastly, we can also obtain the chemical equation of state:

µ(T, V,N) =

(
∂F

∂N

)
T,V

= −kBT log

[
V

N

(
mkBT

2πℏ2

)3/2
]

(5.33)

Thankfully, this also exactly agrees with our result from the microcanonical ensemble earlier. This con-
firms our intuitive view that the canonical ensemble should produce identical results to the microcanonical
ensemble, with the only difference being that the canonical ensemble takes on a fluctuating energy whose
mean ⟨E⟩ agrees with the exact microcanonical energy E to good approximation. This can be confirmed by
evaluating ⟨E⟩ from the partition function, which will yield the same temperature equation of state as the
microcanonical ensemble.

In fact, the connection between the two ensembles is made even clearer in the continuous formalism.
Comparing the continuous canonical partition function with the microcanonical density of states from Eq. 5.11,
we note an interesting connection:

Z(β, V,N) =

∫ ∞

0

dE e−βEg(E, V,N) (5.34)
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FIGURE 10: Contours for the Bromwich Integral to Obtain the Density of States. (Left) We start by placing a vertical
contour on some β′ ∈ R which lies to the right of all non-holomorphic domains of Z(β, V,N). In this case, we have a
pole of order 3N/2 at the origin, which is also a branch point that necessitates a branch cut to β → −∞. (Right) If a
branch cut is required, we choose the blue contour to enclose the pole at the origin whilst running along both separate
holomorphic domains on either side of the branch cut. If the branch cut can be written off (as we have done by assuming
the thermodynamic limit), we choose the green contour Γ which encloses the pole and is closed in the left half-plane. This
is displaced from the pole by some small β′ = ϵ.

where we explicitly change the temperature dependency to β, and the integral is carried out over the
domain [0,∞) since the energy is assumed to be bounded below by zero (otherwise the Laplace kernel e−βE

would not converge). This means that the classical canonical partition function is simply the Laplace transform
of the microcanonical density of states (with β serving as the complex frequency)! This also means the process
can be inverted (in theory) to obtain the microcanonical density of states from the classical canonical partition
function, though this will have to be computed using the Bromwich integral:

g(E, V,N) =
1

2πi

∫ β′+i∞

β′−i∞
dβ eβEZ(β, V,N) (5.35)

where β′ ∈ R sits to the right of all poles of Z(β, V,N). Of course, this is not the ideal contour to perform
the integral along, and it should be deformed so the residue theorem can be exploited to obtain quick results.
We will now attempt to compute this Bromwich integral for the classical ideal gas to obtain the microcanonical
density of states (Eq. 5.17) from the classical canonical partition function in Eq. 5.29.

The basic setup reads:

g(E, V,N) =
1

2πi

∫ β′+i∞

β′−i∞
dβ eβE

V N

N !

(
mkBT

2πℏ2

)3N/2

=
V N

N !

( m

2πℏ2
)3N/2 1

2πi

∫ β′+i∞

β′−i∞
dβ

eβE

β3N/2

As is the case in any complex integral, we need to analyse the structure of the integrand first to determine
the appropriate contour. Firstly, the integrand has a pole of (thermodynamically large) order 3N/2 at β = 0.
Next, we also see that the integrand demands a branch cut from β = 0 to β → −∞ if N is odd. However,
we can treat N as being even since it is thermodynamically large, and so we don’t expect the result to change
whether it is of the value 1023 or 1023+1. We thus assume N is even and close the contour on the left half-plane.
This allows us to invoke the residue theorem on the pole at the origin, which we evaluate as:
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∫
Γ

dβ
eβE

β3N/2
= 2πiRes

(
eβE

β3N/2

)
= 2πi

E3N/2−1

(3N/2− 1)!
(5.36)

which is easily obtained using the limit formula for residues of higher order poles (or using a Laurent
series expansion). We thus obtain the density of states as:

g(E, V,N) =
V N

N !

( m

2πℏ2
)3N/2 E3N/2−1

(3N/2− 1)!
(5.37)

which agrees with the microcanonical result (up to the Boltzmann counting error, which was fixed later)!
While we had the slightly sketchy step of assuming N was even, it should be noted that expressing the factorial
of 3N/2−1 in terms of the gamma function restores meaning for odd-valued N , and this will return the correct
original partition function when subject to the Laplace transform of Eq. 5.34.

5.4.1 Revisiting Fluctuations in the Canonical Ensemble

Earlier when we were studying the canonical ensemble, we found in Eq. 3.16 that the absolute size of energy
fluctuations scaled with the square root of the heat capacity (the relative fluctuations scaled as 1/

√
N ). We now

wish to revisit this idea in the continuous classical ensemble to further cement the notion that the canonical
and microcanonical ensembles are, in practice, identical.

We first start with the fact that the canonical probability distribution is constructed as:

P (E) dE ∝ e−βEg(E) dE (5.38)

This is the product of the Boltzmann factor e−βE which monotonically decreases with E, and the density
of states g(E) which monotonically increases with E. The product must therefore have an extremum29 at some
value of E = E∗. The value of E∗ is easily determined by solving:

∂

∂E

[
e−βEg(E)

]∣∣∣∣
E=E∗

= 0 (5.39)

=⇒ ∂ log g(E)

∂E

∣∣∣∣
E=E∗

= β (5.40)

From our thermodynamic definition of tempeature, we had:

∂S(E)

∂E

∣∣∣∣
E=⟨E⟩

=
1

T
= kBβ (5.41)

which immediately leads to the condition that ⟨E⟩ = E∗. This is neat because it directly tells us that
the most likely energy value E∗ is equal to its mean value ⟨E⟩ that corresponds to the measurable thermo-
dynamic internal energy. This justifies our usual trickery of interchangeably using both of these quantities.
To get a better understanding of the probability distribution itself, let’s expand this distribution around the
maximum30:

29At this stage, we technically have no information on whether this extremal point is a minimum or maximum. However, knowing that
this is a probability distribution which will have to be normalised, we can deduce that this must be a maximal point, otherwise there is no
way to normalise the distribution (assuming it is well-behaved).

30I have dropped the energy shell thickness dE here since it is physically obvious as to what we’re doing. We just have to keep in mind
that the units of g(E) are that of [E]−1.
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log
[
e−βEg(E)

]
=

(
−β ⟨E⟩+ S

kB

)
+

1

2

∂2

∂E2
log
[
e−βEg(E)

]∣∣∣∣
E=⟨E⟩

(E − ⟨E⟩)2 +O(E3)

≈ −β(⟨E⟩ − TS)− 1

2kBT 2CV
(E − ⟨E⟩)2 (5.42)

where I have chosen to expand the logarithm of the distribution instead of the distribution itself, since this
splits up the multiplicative factors into additive terms for easy expansion. We also directly use the result from
Eq. 3.16 in the second derivative term. This gives us the distribution as:

P (E) dE ∼ e−β(⟨E⟩−TS) exp

[
− (E − ⟨E⟩)2

2kBT 2CV

]
dE (5.43)

where the prefactor of e−β(⟨E⟩−TS) = e−βF is just our old friend – the canonical partition function Z!
This tells us that the normalised probability distribution P (E)/Z is an overall Gaussian distribution in E

with mean ⟨E⟩ and variance kBT
2CV . In terms of the nondimensionalised energy E/ ⟨E⟩, we see that the

distribution has its mean at unity, and a variance which now scales as 1/
√
N (as we saw before in Eq. 3.16). In

the thermodynamic limit N ≫ 1, this rapidly approaches a Dirac delta distribution!
We can look at this for the specific situation of the classical ideal gas, to get a grasp of the numbers. We

have already seen from Eq. 5.17 (up to the incorrect Boltzmann counting) that g(E) scales as E3N/2−1. The
maximal probability thus occurs at:

E∗ =
1

β

(
3N

2
− 1

)
(5.44)

On the other hand, we also know from the temperature equation of state that the internal energy is given
by ⟨E⟩ = 3N/2β, which is incredibly close to E∗ for thermodynamically large N . An example of this situation
is shown in Fig. 11 for N = 10.

5.5 The Classical Ideal Gas in the GCE

Finally, we turn to the grand canonical ensemble to analyse the classical ideal gas. We expect that this should
return us the same results as before, only now we have the fluctuating particle number which could make for
some interesting discussion. In a similar manner to the canonical ensemble, we construct the grand canonical
probability density and grand partition function as:

ρgc(q,p) =
1

(2πℏ)3N
eβµN

Z(T, V, µ)
exp [−βH(q,p)] (5.45)

where Z(T, V, µ) =
1

(2πℏ)3N
∞∑

N=0

∫
dq dp eβµN exp [−βH(q,p)] (5.46)

which now includes the fugacity factor zN and a sum over the particle numbers N , in contrast to the
classical canonical partition function which just integrates over phase space. With the same Hamiltonian from
Eq. 5.12, we now construct the grand partition function starting from the previously obtained canonical parti-
tion function in Eq. 5.29:
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FIGURE 11: Behaviour of the Boltzmann factor, density of states and their product. In this plot, the two factors and
their product (probability) is shown normalised to their respective values at E = E∗. This plot shows the situation the
classical ideal gas with N = 10, so there is a noticeable deviation between E∗ and ⟨E⟩, but this rapidly shrinks in the limit
of larger N . The skewness of the distribution is also due to the small value of N , and will appear as a O(E3) correction.
Adapted from [5].

Z(T, V, µ) =

∞∑
N=0

eβµNZ(T, V,N)

=

∞∑
N=0

1

N !

[
V eβµ

(
mkBT

2πℏ2

)3/2
]N

= exp

[
V exp

(
µ

kBT

)(
mkBT

2πℏ2

)3/2
]

(5.47)

From the grand partition function, we can then easily obtain the grand potential:

Φ(T, V, µ) = −kBT logZ(T, V, µ) = −kBTV exp

(
µ

kBT

)(
mkBT

2πℏ2

)3/2

(5.48)

This easily gives us the various equations of state through appropriate derivatives, which you can try on
your own. I would like to focus specifically on the particle number equation of state:

⟨N⟩ (T, V, µ) = −
(
∂Φ

∂µ

)
T,V

= V exp

(
µ

kBT

)(
mkBT

2πℏ2

)3/2

(5.49)

which tells us that we can write the grand partition function simply as:

Z = exp(⟨N⟩) (5.50)

Now, let’s consider the probability for a system in the grand canonical ensemble to have Ns particles. This
is written:

P (Ns) =
1

Z
eβµNsZ(T, V,Ns) (5.51)
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which is essentially the grand canonical probability, after integrating out all other variables except the par-
ticle number. Comparing our expression for ⟨N⟩ against the classical canonical partition function in Eq. 5.29,
we identify that the probability can be written as:

P (Ns) = exp(−⟨N⟩) 1

Ns!
⟨N⟩Ns

= Pois(k = Ns;λ = ⟨N⟩) (5.52)

which is a Poisson distribution! This also agrees with the fact that the number fluctuations evaluate to
give:

〈
(∆N)

2
〉
=

1

β

(
∂ ⟨N⟩
∂µ

)
T,V

= ⟨N⟩ (5.53)

which is characteristic for a Poisson distribution. We thus see that the classical ideal gas in the grand
canonical ensemble follows Poissonian statistics for its number distribution, in that the number of particles in
a partitioned subsystem will demonstrate fluctuations dictated by the Poisson distribution31.

31For those of you who took PHY 304 and saw my review on quantum optics at the end of the course, you may recognise this Poissonian
fluctuation as being characteristic of the photon field. This is not a coincidence, and it is for this same reason that the photon gas (blackbody
radiation) is often called the ideal quantum gas. It is the only quantum gas that truly resides in the µ = 0 regime.
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