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1 Introduction to Index Notation

While we are used to performing vector manipulations in a given coordinate system, it turns out that ab-
straction can often make these expressions take on a much simpler form. Specifically, we want to develop a
formalism for expressing the components of vectors in a compact fashion so that manipulations of these quan-
tities and the underlying bases can be performed with relative mathematical ease. In his seminal 1916 paper
outlining his newfound theory of general relativity [1], Einstein proposed a new convention out of “brevity”,
though everyone knew him to be one who hated to needlessly carry over expressions from previous lines. It
was rapidly adopted by theorists in the field, and despite their best efforts, detractors did not hold out past the
mid 1930s1. This notation has now been named after him, as the Einstein summation convention, sometimes
also simply called index notation.

Given a region of space which resembles2 Rn, we can establish a Cartesian coordinate system which then
denotes the position of any point in this space by an n-tuple (a1, a2, · · · , an). This is equivalent to defining
an orthonormal basis {ê1, ê2, · · · , ên} for the space, following which all positions can be described as position
vectors formed by linear combinations of this basis. It has been implicitly assumed that all of these vectors are
column vectors. Mathematically, we write:

1This was around the time when he had successfully fled from Germany and arrived in Princeton to take up a position at the Institute
for Advanced Study (where he would continue his work until his passing in 1955). He was known to be a brilliant speaker and author, so
it was only natural that he would sway the naysayers eventually.

2This qualification is incredibly important, and will be expounded later. As a simple example of how this argument breaks down in
special cases, consider the surface of a 3-dimensional sphere. Locally (in small enough patches on the surface), the surface looks like it can
be described by a coordinate system of R2, but it would be egregious to extrapolate this to say that the entire sphere can be described by a
single R2 coordinate system (see flat earther). Specifically, it can be shown that there will always be at least one point on the sphere which
cannot be uniquely described by R2. For instance, if we set the origin of the coordinate system at the North Pole, then the South Pole will
be a finite line in this coordinate system.
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r = a1ê1 + a2ê2 + · · ·+ anên (1.1)

=

n∑
i=1

aiêi (1.2)

The coefficients of the linear combination constituting the position vector are thus simply the coordinates
of the position in question. Einstein’s convention involves dropping the summation symbol, where it is hence-
forth implied that the occurrence of any index twice denotes a sum over that index from 1 to n. For instance,
the position vector can now be rewritten as:

r = aiêi (1.3)

One should note that the choice of label for the index (i in this case) is arbitrary, and can be chosen at will.
These are known as dummy indices, since they end up being summed over and are thus free to take on any
convenient label (e.g. i, µ, $,♡, · · · )3. This implies two very important rules:

1. No index can appear on the same side of an equation more than twice.

2. This is an unofficial rule commonly known as the conservation of index – any indices appearing on one
side of an equation once must also appear on the other side of the equation once. Such indices are known
as free indices.

That’s really it.

2 The Kronecker Delta and Scalar Products

From this point on, we will work exclusively in 3D so it is always implied that the summations run as i = 1, 2, 3.
The first object we will meet is the Kronecker delta δij , which is defined as:

δij =

1 , when i = j

0 , when i ̸= j
(2.1)

While this seems like a rather trivial object, it turns out to be surprisingly useful in much of what follows.
Its first primary use appears in the orthonormality relation between basis vectors, where we can succinctly
write:

êi · êj = δij (2.2)

This is easy to see, since we imposed that the basis was orthonormal at the start, so the inner products
between different basis vectors vanishes, while the inner product of a basis vector with itself gives unity for
a normalised (unit) vector. With this, we can use the Kronecker delta to construct the scalar (inner) product
between arbitrary vectors as:

3In the literature, it is common to use the Latin alphabet for indices which run over the values {1, 2, 3}, while reserving Greek letters for
indices which run over the values {0, 1, 2, 3}, as is used in relativistic (3+1)-dimensional notation. Any other choice of index will usually
prompt strange looks from the audience.
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a · b = (aiêi) · (bj êj)

= aibj(êi · êj)

= δijaibj

= aibi (2.3)

where in the second line, I have used the bilinearity of the scalar product and in the last line, I have
invoked the definition of the Kronecker delta from Eq. 2.1 to set the index j to i, since all other values vanish
under the implied summation over j. Note that we could have just as well performed the summation over i
instead, using the Kronecker delta to set all appearances of i to j. The two results are equivalent, since the final
index appearing on the right is a dummy index, and can be renamed at will.

We can similarly also express matrices in index notation, though I will first borrow from the Dirac notation
in quantum mechanics to simplify things a little. So far, all the vectors presented (including the unit vectors)
have been assumed to be column vectors (n × 1 objects). We can identify these as kets, making the notational
switch: a −→ |a⟩ for a general vector, and êi −→ |ei⟩ for the unit vectors. Then, it should be clear that the
transpose of any of these vectors |a⟩ is simply given by the corresponding bra ⟨a|. Now, we return to the
problem of expressing matrices in index form, by writing:

M =
∑
i,j

|ei⟩⟨ei|M |ej⟩⟨ej |

=
∑
i,j

|ei⟩Mij ⟨ej |

= Mij |ei⟩⟨ej | (2.4)

where in the first line, I have used the completeness relation on either side of the matrix M. In the second
line, we define the ij-th matrix element of M as Mij = ⟨ei|M|ej⟩, and in the last line I have invoked the index
notation and simply moved the matrix element to the left since it is just a scalar. In this form, we see that every
matrix is just a sum over all of its elements Mij multiplied by the corresponding dyad4 |ei⟩⟨ej |.

It is interesting to note that the Kronecker delta has two indices, just like the matrix element Mij , and it
is thus tempting to think of it as a matrix. It turns out that this is absolutely the way to think about it, since
replacing Mij in Eq. 2.4 with the Kronecker delta returns:

δij |ei⟩⟨ej | = |ei⟩⟨ei| = 1 (2.5)

where we use the completeness relation for the last equality. Thus, we see that the Kronecker delta is
nothing more than the identity matrix. With these ideas, we can represent matrix multiplication using this
notation as:

Ax = b

⇐⇒ Aijxj = bi

⇐⇒ xjAij = bi

4The word dyad is not too commonly seen in physics. Think of it like the matrix equivalent of a unit vector, where it has a one in only
one spot and zeroes everywhere else, so it only addresses a single position in a matrix. This is similar to the Cartesian representation of a
unit vector, where it just has a one in only one spot and zeroes everywhere else, meaning it only points along one of the coordinate axes.
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Interestingly, the fact that the index notation now reduces mathematical objects like vectors and matrices
to their scalar components implies that we can now freely permute these quantities around to our hearts’
content. This is perfectly valid since these are just scalars and do not have any row or column structure that
we need to care about when taking their products. We just have to be careful when re-expressing the final
expression back into vector/matrix form, where the summations must be performed in the right order. A
good rule of thumb is to keep indices as close together as possible, so it is more easily seen which order the
product must be taken in, and where (if applicable) any transpose operations should be applied. In the above
expression, I have also implicitly dropped the basis vector êi on both sides of the equation, which is allowed
since we are merely comparing the components of each basis vector.

It should also be noted that the operation of summing over one of the indices in a Kronecker delta is
identical to (and sometimes known as) tensor contraction5. In this operation, we are effectively reducing the
rank (number of indices) of the object by two. For instance, the outer product of two vectors aibj forms a
matrix, which is a rank-two tensor. In contrast, the inner product of two vectors aibi forms a scalar, which is a
rank-zero tensor. These two expressions differ only by the imposition of δij . A useful result is the contraction
of the Kronecker delta itself, which can also be viewed as the trace of the identity matrix:

δijδij = δii = 3 (2.6)

3 The Levi-Civita Symbol and Cross Products

FIGURE 1: Graphical representation of
the Levi-Civita symbol, with each of the
coordinate axes representing one of the in-
dices. Green spots represent a value of +1,
while red spots represent a value of −1,
with all other spots having zero. Image ob-
tained from [3].

The next most useful symbol we will frequently encounter
throughout all of physics is the Levi-Civita symbol εijk, some-
times also known as the totally antisymmetric tensor. In contrast
to the Kronecker delta, the Levi-Civita has three indices, so this
should not be represented as a 2D matrix but rather a 3D cube
with entries in the 33 = 27 possible spots. Its definition is given
as follows:

εijk =


+1 , ijk is an even permutation of 123

−1 , ijk is an odd permutation of 123

0 , otherwise

(3.1)

In this definition, the terms even and odd permutation refer
to the method of obtaining ijk starting from the triple 123. Even
permutations are those which can be obtained through cyclic
permutation, such as 123, 231, 312. Odd permutations are those
which can be obtained by cyclic permutation after a single swap,
such as 213, 132, 321. An equivalent definition of the permuta-
tion parity is also to count the number of pairwise swaps it takes
to obtain the triple ijk starting from 123. It will quickly become
clear that the even (odd) permutations are those which take an

5If the sudden appearance of the term tensor has shocked you, refer to [2] for one of the best reviews of the subject (in my opin-
ion). Specifically, chapters 2–8 cover Cartesian tensor theory in great detail while remaining accessible to a large audience. A thorough
understanding of tensor geometry is not required for the subject matter here though.
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even (odd) number of such swaps, hence the names. The symbol also vanishes for all values of ijk which
are not permutations of 123, and this specifically occurs when any two (or all three) indices are equal. In this
manner we see that any entry of εijk along a line connecting two corners of the cube must vanish, which sets
21 of the values to zero, and any entry in the region where (i + j + k) < 6 must vanish (by the pigeonhole
principle) leaving only six nonzero entries. An intuitive visualisation of the Levi-Civita symbol is provided
in Fig. 1, which shows that all the nonzero entries lie in a single plane perpendicular to n = (1, 1, 1). This
geometry gives the Levi-Civita symbol its most notable characteristic – it changes sign under the permutation
of any two indices.

Coming back to its use in index notation, the Levi-Civita symbol provides the natural representation of a
cross (vector) product in index notation. Specifically, we can write:

a× b = εijkêiajbk = εijkaibj êk (3.2)

where the unit basis vector can be placed either in the first or last position with no consequence, since
these are just cyclic permutations of the indices which do not change the sign of the Levi-Civita symbol. One
may also be familiar with the definition of the cross product as a matrix determinant:

a× b =

∣∣∣∣∣∣∣
ê1 ê2 ê3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ (3.3)

Comparing Eqs. 3.2 and 3.3 reveals some close similarities, and it turns out that the Levi-Civita is nothing
more than the operation which takes a set of vectors, places them into the columns of a matrix, and computes
their determinant. From this, we can actually write the explicit form of the Levi-Civita symbol (in 3D) as:

εijk ≡

∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣ (3.4)

In this form, it becomes much clearer why the Levi-Civita symbol vanishes if any two indices are equal. If
this were to occur, at least one row of this matrix would be empty, and so the determinant trivially vanishes.
We can now use this form to compute several incredibly useful identities for the Levi-Civita symbol which
come up ubiquitously throughout physics.

3.1 Contraction Identities

One may be tempted (or not) to consider the product of two Levi-Civita symbols εijkεlrs. Following the
definition from Eq. 3.4 would give us a horrendous expression, and indeed the resulting expression is a rank-
six beast which is almost never useful. Instead, we can consider the simplest case where the product is fully
contracted, that is, we wish to evaluate the result of εijkεijk. This is rather simple, since it implies that we are
simply taking the square of all 27 entries in the symbol and summing over it. We previously already saw that
there are only six nonzero entries in the symbol, and they all have values ±1, so the result is simply:

εijkεijk = 6 (3.5)

The next case is that of a doubly-contracted product, where two of the indices on the two symbols are
set to be equal as εijkεijl. First, we note that for a given set of the first two indices, there is (at most) only
one nonvanishing element for the last index. Furthermore, the equality of the first two indices in the two
occurrences of the symbol implies that any nonzero product must also have the last indices of the two symbols
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being equal. We thus expect that the answer is proportional to δkl. This also means that any contribution to
the answer would appear as a square of the Levi-Civita element, which can only be unity since (±1)2 = 1.

Now, since k and l are free indices, they are not being summed over and we only have to worry about
summation over i and j. For this, we note that we can fix the index k, which thus also fixes l, and consider how
many nonzero combinations for (i, j) remain. This clearly gives two remaining combinations, since neither of
these values can be equal to k and they cannot be equal to each other. We thus obtain the result:

εijkεijl = 2δkl (3.6)

Finally, we have the “hardest” case for which the product is only singly contracted as εijkεilm, so we
expect the result to be a rank-four tensor. To tackle this, we first invoke Eq. 3.4 to write:

εijkεilm ≡

∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
δi1 δi2 δi3

δl1 δl2 δl3

δm1 δm2 δm3

∣∣∣∣∣∣∣ (3.7)

We can simplify this by first noting that the product of two determinants is equal to the determinant of
the product. However, before proceeding to write out the entire matrix, we can make some greatly simplifying
observations. First, the determinant of a matrix is unaffected by taking its transpose, so we will transpose the
second matrix to ensure that the numerical indices match up under matrix multiplication. Then, the entries of
the resulting matrix will be of the form:

(εijkεilm)ab = δa1δb1 + δa2δb2 + δa3δb3

= δacδbc

= δab (3.8)

where (εijkεilm)ab represents the element obtained by taking the product of the a-th row of εijk with the
b-th column of ε⊺ilm. This is a considerable simplification, and enables us to write:

εijkεilm =

∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3


δi1 δl1 δm1

δi2 δl2 δm2

δi3 δl3 δm3


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
δii δil δim

δji δjl δjm

δki δkl δkm

∣∣∣∣∣∣∣
= δii(δjlδkm − δjmδkl)− δil(δjiδkm − δjmδki) + δim(δjiδkl − δjlδki)

= 3δjlδkm − 3δjmδkl − δjlδkm + δjmδkl + δjmδkl − δjlδkm

= δjlδkm − δjmδkl (3.9)

It should also be noted that the two equal indices on the Levi-Civita symbols do not have to be in the
same position, since they can always be permuted cyclically to make use of this identity. We only have to
ensure that common indices are either in the first or last position6. A simple mnemonic to remember this

6This is because of the cyclic property of the indices which leave the Levi-Civita symbol unchanged. If the common index is in either
the first or last positions, the reduced pair of indices (once the common index is removed) preserves its ordering.
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identity is same same, then different. Specifically, if we look at the two sets of indices on the Levi-Civitae7, say
(ijk) and (rsi), one of these will have to be cyclically permuted to put both i’s in the same position. However,
the end result is independent of i since this is a dummy index, and the cyclic permutation does not change
the relative order of the remaining two indices, so we can simply ignore i and consider the reduced pair (jk)
and (rs). The mnemonic then demands that we pair the indices in the deltas as (jr)(ks) (same same), then
as (js)(kr) (different) with the minus sign on the second term. This identity will be repeatedly used in vector
calculus, particularly in cases where we have a nested cross product (or curl). In obtaining this result, we have
also passed the general solution to the product of two Levi-Civita symbols in the second line, where we can
immediately identify the solution as:

εijkεqrs =

∣∣∣∣∣∣∣
δiq δir δis

δjq δjr δjs

δkq δkr δks

∣∣∣∣∣∣∣ (3.10)

This result comes up far less often, and for good reason too. In general, when performing manipulations
on vectors, we expect to obtain a tensorial result of rank zero, one or two. In these cases, it is likely that the
intermediate result would contain tensors of higher rank, but the final result will typically be contracted down
appropriately. Thus, in any occurrence of a product of two Levi-Civita symbols whereby we have a rank-six
tensor, it is usually the case that this can be first contracted at least once to invoke Eq. 3.9, rather than having to
use the general case of Eq. 3.10. As an example of how these identities are used, we will now derive the vector
triple product rule using index notation.

A · (B×C) = δijAi(εjklBkCl)

= εiklAiBkCl, summing over j in the previous delta

= εkliAiBkCl, cyclic permutation of ikl in the Levi-Civita symbol

= BkεkliClAi, moving scalars

= δjkBjεkliClAi, reintroducing a delta through reverse contraction

= B · (C×A) (3.11)

While this may have looked like a lengthier-than-necessary derivation, once intuition sets in, derivations
like these using the index notation can be done in just a couple of lines. As an example, we will also derive the
“BAC-CAB” rule using index notation.

A× (B×C) = εijkêiAj(εklmBlCm)

= êiAjBlCm(δilδjm − δimδjl), same same, then different

= êiAjBiCj − êiAjBjCi, summing over l and m

= B(A ·C)−C(A ·B) (3.12)

where I have skipped any contraction steps by automatically summing over one index in the Kronecker
delta (i.e. δijaj → ai). Clearly, this is far simpler than writing out all terms explicitly and cancelling things out.
One is also less prone to algebraic errors in the derivation by using this method, unless of course one’s index
bookkeeping is subpar, in which case one should reconsider studying vector calculus.

7This is probably not the plural of Levi-Civita, especially given Civita is literally someone’s name, but this just sounds phonetically
correct so let’s go with it for now.
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4 From Tensor Algebra to Tensor Calculus

Thusfar, we have been considering the algebraic manipulations one can perform on tensors, with components
that were assumed to be constants. We can extrapolate our arguments from before to tensors of functions,
whose components now have some functional parametrisation. This parametrisation could be spatial (a func-
tion of position r), temporal (a function of time t), or both. With functions in each element of a tensor, we can
now perform the standard operations of calculus on tensors, namely differentiation and integration. For this,
we introduce the Cartesian vector derivative operator, or simply the gradient operator ∂i, defined by:

∂i ≡
〈

∂

∂x1
,

∂

∂x2
, · · · , ∂

∂xn

〉
=

∂

∂xi
êi

d=3≡ ∇ (4.1)

At this point, I must reiterate that the definition above is strictly only valid in Cartesian coordinates.
The contents of this section cannot be extrapolated to curvilinear coordinate systems (such as cylindrical or
spherical coordinates) in general. While the identities may carry over, any results obtained in the Cartesian
formalism will not. Now that we have defined the gradient operator in a similar fashion to a vector, it is trivial
to define the three basic vector calculus operations:

∇ϕ = ∂iϕ (4.2)

∇ ·A = ∂iAi (4.3)

∇×A = ∂iAj êk = êi∂jAk (4.4)

where the two forms in the last line can be used interchangeably up to personal preference. With these
definitions in place, and the identities from the previous section, we can derive nearly8 every vector calculus
identity that is relevant in undergraduate physics. The biggest mistake that students typically make in using
the index notation for vector calculus is forgetting that, while the quantities are scalars, the differential op-
erator is still a differential operator. Thus, a great deal of attention should be paid to the application of any
derivatives, particularly if the product rule is required. As a demonstration, we will now derive the identity
for the divergence of a cross product (relevant in the use of the Poynting vector, Chapter 8).

∇ · (A×B) = ∂i(εijkAjBk)

= εijk(Bk∂iAj +Aj∂iBk), product rule

= Bkεijk∂iAj −Ajεjik∂iBk, permute once in the 2nd term

= B · (∇×A)−A · (∇×B), vector triple products (4.5)

Note that while I have used the product rule on the second line, it does not apply to the Levi-Civita symbol
since that is merely a mathematical object consisting of constants ±1. To really drive home the point, I will also
include two more derivations which involve a neat trick that comes up repeatedly. First, we will show the
usual result that the divergence of any curl vanishes. We proceed as:

8I say nearly, because there is specifically one identity that you cannot – the gradient of a scalar product ∇(A ·B) = (A ·∇)B+ (B ·
∇)A + A × (∇ × B) + B × (∇ × A). The good news is that you wouldn’t be able to derive it explicitly either. One simply needs to
divine the right hand side and show they are equal.
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∇ · (∇×A) = ∂iεijk∂jAk

= εijk∂i∂jAk, move the Levi-Civita out

=
1

2
(εijk∂i∂jAk + εjik∂j∂iAk), split into two then rename i ↔ j in the 2nd term

=
1

2
(εijk∂i∂jAk + εjik∂i∂jAk), commute derivatives by Schwarz’ theorem

=
1

2
(εijk∂i∂jAk − εijk∂i∂jAk), permute the 2nd Levi-Civita

= 0

While it might look annoying, this is an incredibly common and powerful trick. It involves splitting a term
up into two identical half-copies of itself, then waving a magic wand on the second term until we get it back to
the same form as the first with a minus sign, which shows the original term vanishes. From a symmetry point
of view, this cancellation arises because the rank-one tensor εijk∂i∂j is antisymmetric in the indices (i, j). Thus,
any summation over those two indices will always give equal and opposite terms which cancel, regardless of
the third index. Similarly, we can use this to show the curl of a gradient vanishes.

∇× (∇ϕ) = εijkêi∂j(∂kϕ)

= êi
1

2
(εijk∂j∂kϕ+ εikj∂k∂jϕ), split and rename i ↔ j in the 2nd term

= êi
1

2
(εijk∂j∂kϕ− εijk∂j∂kϕ), Schwarz’ theorem and permute the Levi-Civita

= 0

If you are not sold by this point on index notation, that is perfectly fine. Whether or not someone ends up
using it is entirely up to personal preference, and many difficult calculations are often easier to analyse with
just one component before abstracting the argument to the general case using index notation.

5 Physics with Index Notation

Now that we have covered the mathematical aspects of this summary, we can finally do some physics. Here,
I aim to provide just a few illustrative examples of how index notation can either simplify computation, or
provide better intuition on the physics involved.

5.1 Electromagnetism

A very common set of results that we will use in employing index notation for electromagnetism-related cal-
culations is that of derivatives of the position vector, or its norm. For instance, we will frequently have to take
the gradient of a scalar potential which scales as r−n, or the divergence of a vector field which goes as r/rn, for
some integer n. While these can be worked out with brute-force methods, they are good exercises for building
intuition with the index notation. We first state a near-trivial but important fact about the derivatives of the
position vector r = riêi. When considering the general vector derivative of a position vector, we have:

∂irj = δij (5.1)
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This is easy to see since the Cartesian vector derivative is made up of components ∂/∂x , ∂/∂y , ∂/∂z ,
while the position vector has components x, y, z. Thus, each component of the differential operator acts on only
one component of the position vector to give a nonvanishing result. This result is only true when working in
an orthonormal basis, and is not general. Another useful result is that of the divergence and curl of the position
vector, with the divergence as:

∇ · r = ∂iri = 3 (5.2)

While it looks strange, this is simply the result from Eq. 5.1 with a contraction imposed over the indices
(ij) using another Kronecker delta. That is, we are simply taking the trace of the above result. Since the
Kronecker delta can be represented by the identity matrix, and the trace of the identity matrix is simply a sum
of n 1’s, where n is the dimension of the space, it is clear how we arrive at a value of 3. Next, we consider the
curl of the position vector:

∇× r = êiεijk∂jrk

= êiεijkδjk, using Eq. 5.1

= êiεijj = 0, since Levi-Civita vanishes with two equal indices (5.3)

With these in place, let’s derive one of the two useful results for electromagnetism, namely the gradient of
r−n. We proceed as:

∇
(

1

rn

)
= êi∂i(rjrj)

−n/2, expressing r =
√
r · r

= êi

(
−n

2

)
(rjrj)

−(n/2+1)∂i(rkrk), chain rule

= êi

(
−n

2

)
(rjrj)

−(n/2+1) · 2rkδik, product rule with Eq. 5.1

= −n(rjrj)
−(n/2+1)riêi

= −nr−(n+2)r (5.4)

= − n

rn+1
r̂ (5.5)

There are several subtleties here that we should pay attention to. In the first line, we note that the quantity
rn is defined as the n-th power of the norm of the position vector, so the natural way to express it would be to
contract the position vector with itself and take the appropriate power of the product. When contracting the
position vector, however, we must be careful to assign it a new dummy index since this is not to be confused
with the index from the derivative operator. In the second line, we apply the chain rule to differentiate the
entire expression in parentheses raised to the power −n/2, then apply the derivative operator to the argument
of the parentheses. When doing so, we must also ascribe a new index to the quantity contained within the
parentheses, since these are contracted to give a scalar. Furthermore, the first rule of index notation states that
no index can appear on the same side of the equation more than twice, so keeping the same index j would
result in its appearance four times, which violates this rule. In the third line, we apply the product rule when
differentiating the contraction of the position vector, and also apply Eq. 5.1 to obtain a Kronecker delta. The
remainder of the proof uses elementary operations from before, and the final expression resembles what we
expect from intuition, that the derivative should lower the power of r by one. The result in Eq. 5.4 is also an
equally useful way to express this, though the power of r may be off-putting to the untrained eye.
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Finally, we are in a good position to perform a calculation pertaining to actual physics. As a demonstra-
tion, we will attempt to derive the coordinate-free expression of the electric field from a point dipole (Problem
3.36 in [4]). We begin with the coordinate-free expression for the potential (Eq. 3.99 in [4]) of a point dipole:

Vdip =
1

4πϵ0

r̂ · p
r2

(5.6)

For the remainder of the derivation, the prefactor of 1/4πϵ0 is irrelevant so we will simply ignore it and
insert it at the end to ensure the units make sense. To proceed, we consider the gradient of the potential:

∇
(
r̂ · p
r2

)
= ∇

( r

r3
· p

)
= (p ·∇)

r

r3
+
( r

r3
·∇

)
p︸ ︷︷ ︸

∂ipj=0

+
r

r3
× (∇× p)︸ ︷︷ ︸

∂ipj=0

+p×
(
∇× r

r3

)
︸ ︷︷ ︸
εijk∂jrk=0

= pi∂i

[
rj

(rkrk)3/2

]
êj (5.7)

In the second line, I have used the vector identity for the gradient of a dot product (yes, the only one that
you cannot derive easily). Of the resulting four terms, three of them vanish. Since the dipole moment p has
no functional dependence, any derivatives of it trivially vanish. For the last term, we note by expanding it in
index notation that it is proportional to the curl of r, which we have previously noted in Eq. 5.3 also vanishes.
Thus, we are left with a single term to deal with. For this, we focus solely on the derivative and ignore the
prefactor and unit vector, where we should note that in the following expression, (i, j) are a free indices so
they must be conserved.

∂i

[
rj

(rkrk)3/2

]
=

∂irj
(rkrk)3/2

+ rj∂i
1

r3
, product rule

=
1

r3
δij −

3rirj
r5

, Eq. 5.1, Eq. 5.4

=
1

r3

(
δij −

3rirj
r2

)
where I have dealt with the second term of the product rule using our expression from Eq. 5.4, keeping i

as a free index by ignoring the unit vector. We now plug this into Eq. 5.7 and proceed:

∇
(
r̂ · p
r2

)
=

êj
r3

(
δijpi −

3rirjpi
r2

)
=

1

r3

(
pj êj −

3(p · r)rj êj
r2

)
, summing over i

=
1

r3
[p− 3(p · r̂)r̂] (5.8)

Finally, we append the prefactors to obtain:

Edip = −∇Vdip =
1

4πϵ0r3
[3(p · r̂)r̂− p] (5.9)

In a similar fashion, one can obtain the coordinate-free expression for the magnetic field of a point mag-
netic dipole (Problem 5.34 in [4]), starting with its corresponding vector potential. The proof follows very
similar logic to the one above, so I won’t write it out here.
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5.2 Quantum Mechanics

As a demonstration of the versatility of the index notation, let’s also do a simple proof from quantum me-
chanics. Here, we will derive the fundamental angular momentum commutation relation [Li, Lj ] = iℏεijkLk,
assuming only knowledge of the canonical commutation relation [ri, pj ] = iℏδij .

[Li, Lj ] = [εiklrkpl, εjmnrmpn], using the definition L = r× p

= εiklεjmn[rkpl, rmpn], Levi-Civitae are scalars

= εiklεjmn(rk[pl, rmpn] + [rk, rmpn]pl), using [AB,C] = A[B,C] + [A,C]B

= εiklεjmn

rkrm [pl, pn]︸ ︷︷ ︸
=0

+rk[pl, rm]pn + rm[rk, pn]pl + [rk, rm]︸ ︷︷ ︸
=0

plpn


= iℏεiklεjmn(rmplδkn − rkpnδlm), using the canonical commutation relation

= iℏ(εlikεjmkrmpl − εiklεnjlrkpn), summing over one δ index

= iℏ[(δljδim − δlmδij)rmpl − (δinδjk − δijδkn)rkpn], same same, then different

= iℏ(ripj − δijrlpl − rjpi + δijrkpk)

= iℏ(ripj − rjpi), relabel k → l since it’s a dummy index, then cancel

= iℏεijkLk, since this is the k-th component of the cross product (5.10)

Thus, the commutation relation is proven. We can go a step further to have a look at a cool property of
quantum mechanical angular momenta, by considering the following cross product:

L× L = εijkLiLj êk = (LiLj − LjLi)êk = [Li, Lj ]êk (5.11)

Thus, by multiplying the unit vector êk on both sides of Eq. 5.10 and removing the Levi-Civita symbol9,
we obtain:

L× L = iℏL (5.12)

This is (in my opinion) one of the strangest things about quantum mechanics, that the cross product of
a vector with itself can give a nonzero result, namely itself again. This truly illustrates the concept of why
a quantum angular momentum vector is completely unlike a classical angular momentum vector, where the
Heisenberg uncertainty relation accords just enough uncertainty in the position and momentum coordinates
that a vector can behave like it is not perfectly aligned with itself, when treated in real position space.

9This is a horrendous abuse of notation, because we have violated two rules here. The first is that no index can appear on the same
side of an equation more than twice. The second is that “removing the Levi-Civita” symbol is not even a mathematically sound operation.
What I am really doing here is multiplying a second Levi-Civita onto both sides and totally contracting it with the first, then invoking
Eq. 3.5, cancelling the common factor of 6 at the end.
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6 A Word of Caution – Curvilinear Coordinates

In this final section, I’d like to elaborate on why the arguments presented here do not generalise well to curvi-
linear coordinate systems. Up till now, we have been working explicitly in Cartesian coordinates where the
unit vectors have always been constant over the entire coordinate system. This is no longer the case in curvilin-
ear coordinates, since the unit vectors in the various directions are now functions of the coordinates themselves.
As an example, consider the orthonormal basis vectors in spherical coordinates [4]:

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ

θ̂ = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ

ϕ̂ = − sinϕx̂+ cosϕŷ

(6.1)

Clearly, these vectors themselves are varying functions of the angles θ and ϕ. If these were to appear
in a derivative, we can thus no longer pull them out of the derivative as we did before with the Cartesian
basis vectors. Specifically, we observe that ∂i(f(xi)êi) ̸= êi∂if(xi) for some function f of the coordinates,
since the unit vectors themselves have functional dependence. To deal with this, we need a more general
view of coordinate systems, which is the ultimate starting point of the field of differential geometry. This
will not be dealt with here, since the subject is rather definition-heavy upon introduction and may not be
elucidative until the reader is more familiar with handling abstract mathematical objects such as manifolds.
A thorough introduction to differential geometry is provided in [5], along with an incredible review of how
physics fundamentally arises from the underlying geometric structure of the universe.
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